Skip to main content
Log in

Three-Dimensional Face Recognition

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

An expression-invariant 3D face recognition approach is presented. Our basic assumption is that facial expressions can be modelled as isometries of the facial surface. This allows to construct expression-invariant representations of faces using the bending-invariant canonical forms approach. The result is an efficient and accurate face recognition algorithm, robust to facial expressions, that can distinguish between identical twins (the first two authors). We demonstrate a prototype system based on the proposed algorithm and compare its performance to classical face recognition methods.

The numerical methods employed by our approach do not require the facial surface explicitly. The surface gradients field, or the surface metric, are sufficient for constructing the expression-invariant representation of any given face. It allows us to perform the 3D face recognition task while avoiding the surface reconstruction stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achermann, B. and Bunke, H. 2000. Classifying range images of humanfaces with Hausdorff distance. In Proc. ICPR, pp. 809–813.

  • Achermann, B., Jiang, X., and Bunke, H. 1997. Face recognition using range images. In Int’l Conf. Virtual Systems and Multimedia, pp. 129–136.

  • Arnoldi, W. 1951. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math, 9:17–29.

    Google Scholar 

  • Ashbourn, J. 2002. Biometrics: Advanced Identity Verification. Springer-Verlag: Berlin Heidelberg, New York.

    Google Scholar 

  • Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H. 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Philadelphia: SIAM, third edition. Online: http://www.cs.utk.edu/dongarra/etemplates/index.html.

  • Besl, P.J. and McKay, N.D. 1992. A method for registration of 3D shapes. IEEE Trans. PAMI, 14:239–256.

    Google Scholar 

  • Beumier, C. and Acheroy, M.P. 1998. Automatic face authentication from 3D surface. In Proc. British Machine Vision Conf, pp. 449–458.

  • Bledsoe, W.W. 1966. Man-machine face recognition. Technical Report PRI 22, Panoramic Research Inc., Palo Alto (CA) USA.

  • Borg, I. and Groenen, P. 1997. Modern Multidimensional Scaling—Theory and Applications. Springer-Verlag: Berlin Heidelberg New York.

    Google Scholar 

  • Bowyer, K.W., Chang, K., and Flynn, P. 2004. A survey of 3D and multi-modal 3D + 2D face recognition. Dept. of Computer Science and Electrical Engineering Technical Report, University of Notre Dame.

  • Bronstein, M.M. 2004. Three-dimensional face recognition. Master’s Thesis, Department of Computer Science, Technion—Israel Institute of Technology.

  • Bronstein, A.M., Bronstein, M.M., Gordon, E., and Kimmel, R. 2003a. High-resolution structured light range scanner with automatic calibration. Technical Report CIS-2003-06, Dept. of Computer Science, Technion, Israel.

  • Bronstein, A.M., Bronstein, M.M., Gordon, E., and Kimmel, R. 2004a. Fusion of 3D and 2D information in face recognition. In Proc. ICIP, pp. 87–90.

  • Bronstein, A.M., Bronstein, M.M., and Kimmel, R. 2003b. Expression-invariant 3D face recognition. In Proc. Audio and Video-based Biometric Person Authentication, pp. 62–69.

  • Bronstein, A.M., Bronstein, M.M., and Kimmel, R. 2005a. Expression-invariant face recognition via spherical embedding. In Proc. ICIP, to appear.

  • Bronstein, A.M., Bronstein, M.M., and Kimmel, R. 2005b. On isometric embedding of facial surfaces into \(\mathbb S\)3. In Proc. Int’l Conf. Scale Space and PDE Methods in Computer Vision, Lecture Notes in Comp. Science 3459, Springer, pp. 622–631.

  • Bronstein, A.M., Bronstein, M.M., Kimmel, R., and Spira, A. 2004b. Face recognition from facial surface metric. In Proc. ECCV, pp. 225–237.

  • Bronstein, M.M., Bronstein, A.M., Kimmel, R., and Yavneh, I. 2005c. A multigrid approach for multi-dimensional scaling. In Proc. Copper Mountain Conf. Multigrid Methods (submitted).

  • Bronstein, M.M., Bronstein, A.M., and Kimmel, R. 2005. Expression-invariant representations for human faces. Technical Report CIS-2005-01, Dept. of Computer Science, Technion, Israel.

  • Brunelli, R. and Poggio, T. 1993. Face recognition: Features vs. templates. IEEE Trans. PAMI, 15(10):1042–1053.

    Google Scholar 

  • Carrihill, B. and Hummel, R. 1985. Experiments with the intensity ratio depth sensor. Computer Vision, Graphics and Image Processing, 32:337–358.

    Google Scholar 

  • Cartoux, J.Y., La Preste, J.T., and Richetin, M. 1989. Face authentication or recognition by profile extraction from range images. In Proc. Workshop on Interpretation of 3D Scenes, pp. 194–199.

  • Chang, K., Bowyer, K., and Flynn, P. 2003. Face recognition using 2D and 3D facial data. In Proc. Multimodal User Authentication Workshop, pp. 25–32.

  • Cox, I., Ghosn, J., and Yianilos, P. 1996. Feature-based face recognition using mixture distance. In Proc. CVPR, pp. 209–216.

  • De Leeuw, J. 1977. Recent Developments in Statistics, Chapt. Applications of convex analysis to multidimensional scaling, Amsterdam: North-Holland, pp. 133–145.

  • De Leeuw, J. and Stoop, I. 1984. Upper bounds on Kruskal’s stress. Psychometrika 49:391–402.

    Google Scholar 

  • Eckart, C. and Young, G. 1936. Approximation of one matrix by another of lower rank. Psychometrika, 1:211–218.

    Google Scholar 

  • Ekman, P. 1973. Darwin and Facial Expression; A Century of Research in Review. Academic Press: New York.

    Google Scholar 

  • Elad, A. and Kimmel, R. 2001. Bending invariant representations for surfaces. In Proc. CVPR, pp. 168–174.

  • Elad, A. and Kimmel, R. 2002. Geometric Methods in Bio-Medical Image Processing, Vol. 2191, Chapt. Spherical flattening of the cortex surface. Springer-Verlag: Berlin Heidelberg New York, pp. 77–89.

    Google Scholar 

  • Elad, A. and Kimmel, R. 2003. On bending invariant signatures for surfaces. IEEE Trans. PAMI, 25(10):1285–1295.

    Google Scholar 

  • Fleishman, S., Drori, I., and Cohen-Or, D. 2003. Bilateral mesh denoising. In Proc. SIGGRAPH, pp. 950–953.

  • Gauss, C.F. 1827. Disquisitiones generales circa superficies curva. Commentationes Societatis Regiæ Scientiarum Gottingensis Recentiores, 6:99–146.

    Google Scholar 

  • Georghiades, A.S., Belhumeur, P.N., and Kriegman, D. 1998. Illumination cones for recognition under variable lighting: Faces. In Proc. CVPR, pp. 52–58.

  • Gheorghiades, A.S., Belhumeur, P.N., and Kriegman, D.J. 2001. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. PAMI, 23(6):643–660.

    Google Scholar 

  • Goldstein, A., Harmon, L., and Lesk, A. 1971. Identification of human faces. Proc. IEEE, 59(5):748–760.

    Google Scholar 

  • Golub, G.H. and Saunders, M. 2004. Personal communication.

  • Golub, G.H. and van Loan, C.F. 1996. Matrix Computations. 3rd ed. The John Hopkins University Press.

  • Gordon, G. 1992. Face recognition based on depth and curvature features. In Proc. CVPR, pp. 108–110.

  • Gordon, G. 1997. Face recognition from frontal and profile views. In Proc. Int’l Workshop on Face and Gesture Recognition, pp. 47–52.

  • Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53:325–338.

    Google Scholar 

  • Grossman, R., Kiryati, N., and Kimmel, R. 2002. Computational surface flattening: A voxel-based approach. IEEE Trans. PAMI, 24(4):433–441.

    Google Scholar 

  • Gruen, A. and Akca, D. 2004. Least squares 3D surface matching. In Proc. ISPRS Working Group V/1 Panoramic Photogrammetry Workshop, pp. 19–22.

  • Gudmundsson, S. 2004. An introduction to riemannian geometry (lecture notes). Online. Available at http://www.matematik.lu.se/matematiklu/personal/sigma/Riemann.pdf.

  • Guttman, L. 1968. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33, pp. 469–506.

    Google Scholar 

  • Hallinan, P. 1994. A low-dimensional representation of human faces for arbitrary lighting conditions. In Proc. CVPR, pp. 995–999.

  • Hesher, C., Srivastava, A., and Erlebacher, G. 2003. A novel technique for face recognition using range images. In Int’l Symp. Signal Processing and Its Applications, Vol. 2, pp. 201–204.

  • Horn, E. and Kiryati, N. 1999. Toward optimal structured light patterns. Image and Vision Computing, 17(2):87–97.

    Article  Google Scholar 

  • Huang, J., Blanz, V., and Heisele, V. 2002. Face recognition using component-based SVM classification and morphable models. SVM, pp. 334–341.

  • Hugli, H. and Maitre, G. 1989. Generation and use of color pseudo random sequences for coding structured light in active ranging. In Proc. Industrial Inspection, Vol. 1010, pp. 75–82.

  • Hung, Y.-P., Chen, C.-S., Hsieh, I.-B., and Fuh, C.-S. 1999. Reconstruction of complete 3D object model from multiview range images. In Proc. SPIE Int’l Symposium on Electronic Imaging, pp. 138–145.

  • Kanade, T. 1973. Picture processing by computer complex and recognition of human faces. Technical report, Kyoto University, Dept. of Information Science.

  • Kearsley, A., Tapia, R., and Trosset, M. 1998. The solution of the metric STRESS and SSTRESS problems in multidimensional scaling using Newton’s method. Computational Statistics, 13(3):369–396.

    Google Scholar 

  • Kimmel, R. 2003. Numerical Geometry of Images. Springer-Verlag: Berlin Heidelberg New York.

    Google Scholar 

  • Kimmel, R. and Sethian, J.A. 1998. Computing geodesic on manifolds. In Proc. US National Academy of Science, Vol. 95, pp. 8431–8435.

  • Kreyszig, E. 1991. Differential Geometry. Dover Publications Inc.: New York.

    Google Scholar 

  • Lee, J.C. and Milios, E. 1990. Matching range images of human faces. In Proc. ICCV, pp. 722–726.

  • Linial, N., London, E., and Rabinovich, Y. 1995. The geometry of graphs and some its algorithmic applications. Combinatorica, 15:333–344.

    Article  Google Scholar 

  • Mansfield, T., Kelly, G., Chandler, D., and Kane, J. 2001. Biometric product testing final report. Technical report, Centre for Mathematics and Scientific Computing, National Physical Laboratory, UK.

  • Mavridis, N., Tsalakanidou, F., Pantazis, D., Malassiotis, S., and Strintzis, M.G. 2001. The HISCORE face recognition application: Affordable desktop face recognition based on a novel 3D camera. In Proc. Int’l Conf. Augmented Virtual Environments and 3D Imaging, pp. 157–160.

  • Medioni, G. and Waupotitsch, R. 2003. Face recognition and modeling in 3D. In Proc. AMFG, pp. 232–233.

  • Mémoli, F. and Sapiro, G. 2004. Comparing point clouds, IMA preprint series no. 1978, University of Minnesota.

  • Nagamine, T., Uemura, T., and Masuda, I. 1992. 3D facial image analysis for human identification. In Proc. ICPR, pp. 324–327.

  • Nash, S. 2000. A multigrid approach to discretized optimization problems. Journal of Optimization Methods and Software, 14:99–116.

    Google Scholar 

  • Ortega-Garcia, J., Bigun, J., Reynolds, D., and Gonzalez-Rodriguez, J. 2004. Authentication gets personal with biometrics. IEEE Signal Processing magazine, 21(2):50–62.

    Article  Google Scholar 

  • Pentland, A., Moghaddam, B., and Starner, T. 1994. View-based and modular eigenspaces for face recognition. In Proc. CVPR, pp. 84–91.

  • Phillips, P.J., Grother, P., Michaels, R.J., Blackburn, D.M., Tabassi, E., and Bone, J. 2003. FRVT 2002: Overview and summary. Online. Available at www.frvt.org.

  • Posdamer, J.L. and Altschuler, M.D. 1982. Surface measurement by space-encoded projected beam systems. Computer Graphics and Image Processing, 18(1):1–17.

    Article  Google Scholar 

  • Schwartz, E.L., Shaw, A., and Wolfson, E. 1989. A numerical solution to the generalized mapmaker’s problem: Flattening nonconvex polyhedral surfaces. IEEE Trans. PAMI, 11:1005–1008.

    Google Scholar 

  • Sethian, J.A. 1996. A review of the theory, algorithms, and applications of level set method for propagating surfaces. Acta numerica, pp. 309–395.

  • Sirovich, L. and Kirby, M. 1987. Low-dimensional procedure for the characterization of human faces. JOSA A, 2:519–524.

    Google Scholar 

  • Sochen, N., Kimmel, R., and Malladi, R. 1998. A general framework for low level vision. IEEE Trans. Image Proc, 7(3):310–318.

    Article  Google Scholar 

  • Spira, A. and Kimmel, R. 2003. An efficient solution to the eikonal equation on parametric manifolds. In INTERPHASE 2003 meeting.

  • Spira, A. and Kimmel, R. 2004. An efficient solution to the Eikonal equation on parametric manifolds. Interfaces and Free Boundaries, 6(3):315–327.

    Google Scholar 

  • Stewart, G.W. and Sun, J.-G. 1990. Matrix Perturbation Theory. Academic Press.

  • Tajima, J. and Iwakawa, M. 1990. 3D data acquisition by rainbow range finder. In Proc. Int’l Conf. Pattern Recognition, pp. 309–313.

  • Tal, A., Elad, M., and Ar, S. 2001. Content based retrieval of VRML objects—an iterative and interactive approach. In Proc. Eurographics Workshop on Multimedia.

  • Tanaka, H.T., Ikeda, M., and Chiaki, H. 1998. Curvature-based face surface recognition using spherical correlation principal directions for curved object recognition. In Proc. Int’l Conf. Automated Face and Gesture Recognition, pp. 372–377.

  • Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. 2002. Geometric surface smoothing via anisotropic diffusion of normals. In Proc. IEEE Conf. Visualization, pp. 125–132.

  • Torgerson, W.S. 1952. Multidimensional scaling I—Theory and methods. Psychometrika, 17:401–419.

    Google Scholar 

  • Tsalakanidou, F., Tzocaras, D., and Strintzis, M. 2003. Use of depth and colour eigenfaces for face recognition. Pattern Recognition Letters, 24:1427–1435.

    Article  Google Scholar 

  • Tsitsiklis, J.N. 1995. Efficient algorithms for globally optimal trajectories. IEEE Trans. Automatic Control, 40(9):1528–1538.

    Article  Google Scholar 

  • Turk, M. and Pentland, A. 1991. Face recognition using eigenfaces. In Proc. CVPR, pp. 586–591.

  • Vuylsteke, P. and Oosterlinck, A. 1990. Range image acquisition with a single binary-encoded light pattern. IEEE Trans. PAMI, 12(2):148–163.

    Google Scholar 

  • Walter, J. and Ritter, H. 2002. On interactive visualization of high-dimensional data using the hyperbolic plane. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pp. 123–131.

  • Wang, Y., Chua, C., and Ho, Y. 2002. Facial feature detection and face recognition from 2D and 3D images. Pattern Recognition Letters, 23:1191–1202.

    Article  Google Scholar 

  • Wiskott, L. 1995. Labeled Graphs and Dynamic Link Matching for Face Recognition and Scene Analysis, No. 53 in Reihe Physik. Thun—Frankfurt am Main: Verlag Harri Deutsch, PhD Thesis.

  • Wiskott, L., Fellous, J., Kruger, N., and von der Malsburg, C. 1997. Face recognition by elastic bunch graph matching. IEEE Trans. PAMI, 19(7):733–742.

    Google Scholar 

  • Young, G. and Householder, A.S. 1938. Discussion of a set of point in terms of their mutual distances. Psychometrika, 3:19–22.

    Google Scholar 

  • Zhang, Z.Y. 1994. Terative point matching for registration of free-form curves and surfaces. IJCV, 13:119–152.

    Article  Google Scholar 

  • Zigelman, G., Kimmel, R., and Kiryati, N. 2002. Texture mapping using surface flattening via multi-dimensional scaling. IEEE Trans. Visualization and computer graphics, 9(2):198–207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronstein, A.M., Bronstein, M.M. & Kimmel, R. Three-Dimensional Face Recognition. Int J Comput Vision 64, 5–30 (2005). https://doi.org/10.1007/s11263-005-1085-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-005-1085-y

Keywords

Navigation