Skip to main content
Log in

Spillover of Newcastle disease virus to Himalayan Griffon vulture: a possible food-based transmission

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript
  • 3 Altmetric

Abstract

The Newcastle disease virus (NDV) affects wild and domesticated bird species, including commercial poultry. Although the diversity of NDV in domestic chickens is well documented, limited information is available about Newcastle disease (ND) outbreaks in other bird species. We report an annotated sequence of NDV/Vulture/Borjuri/01/22, an avirulent strain of NDV reported from Borjuri, Northeast India, in Himalayan Griffon vulture. The complete genome is 15,186 bases long with a fusion protein (F) cleavage site 112GRQGR↓L117. The phylogenetic analysis based on the F protein gene and the whole genome sequence revealed that the isolate from the vulture belongs to genotype II, sharing significant homology with vaccine strain LaSota. The study highlights the possible spillover of the virus from domestic to wild species through the food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Young KT et al (2022) Putative novel avian paramyxovirus (AMPV) and reidentification of APMV-2 and APMV-6 to the species level based on wild bird surveillance (United States, 2016–2018). Appl Environ Microbiol 88(11):e0046622

    Article  PubMed  Google Scholar 

  2. Lefkowitz EJ et al (2018) Virus taxonomy: the database of the International committee on taxonomy of viruses (ICTV). Nucleic Acids Res 46(D1):D708–D717

    Article  CAS  PubMed  Google Scholar 

  3. Doyle TM (1927) A hitherto unrecognized disease of fowls due to a filter-passing virus. J Comp Pathol Ther 40:144–169

    Google Scholar 

  4. Kraneveld FC (1926) Over een in Ned-Indie heerschende Ziete under het pluimves. Nederl.-Indische Bladen v Diergeneesk 38:448–450

    Google Scholar 

  5. Kaleta EF, Baldauf C (1988) Newcastle disease in free-living and pet birds. In: Alexander DJ (ed) Newcastle Disease Developments in Veterinary Virology. Springer, Boston

    Google Scholar 

  6. Albiston H, (1942) Newcastle disease in Victoria. Aust Veterinary J 18(2):75–79. https://doi.org/10.1111/j.1751-0813.1942.tb01466.x

    Article  Google Scholar 

  7. Crawford, Rannikhet. Ann. Rept, 1930.

  8. Ochi Y, Hashimoto K (1929) UbereineneueGeflugelseuche in Korea 6th Rept Govt Inst. Vet. Res 64(1):e3

    Google Scholar 

  9. Rodier E (1928) Philippine Fowl Disease. Procee Soc Exp Biol 25(9):781–783

    Article  Google Scholar 

  10. Gaurav S et al (2022) Isolation of genotype VII avian orthoavulavirus serotype 1 from barn owl from Northeast India. Avian Pathol 51(1):45–50

    Article  CAS  PubMed  Google Scholar 

  11. Nath B, Kumar S (2017) Emerging variant of genotype XIII Newcastle disease virus from Northeast India. Acta Trop 172:64–69

    Article  PubMed  Google Scholar 

  12. Ganar K et al (2017) Emergence of a deviating genotype VI pigeon paramyxovirus type-1 isolated from India. Adv Virol 162(7):2169–2174

    CAS  Google Scholar 

  13. Alexander DJ (2001) Gordon memorial lecture. Newcastle disease Br Poult Sci 42(1):5–22

    Article  CAS  PubMed  Google Scholar 

  14. Lancaster J (1976) A history of Newcastle disease with comments on its economic effects. Worlds Poult Sci J 32(2):167–175

    Article  Google Scholar 

  15. Panda A et al (2004) Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb Pathog 36(1):1–10

    Article  CAS  PubMed  Google Scholar 

  16. Czegledi A et al (2006) Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res 120(1–2):36–48

    Article  CAS  PubMed  Google Scholar 

  17. Calain P, Roux L (1993) The rule of six, a basic feature for efficient replication of sendai virus defective interfering RNA. J Virol 67(8):4822–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lamb, R.A. and G.D. Parks, Paramyxoviridae: the viruses and their replication, in Fields virology: Fifth Edition. 2007, Lippincott, Williams, and Wilkins. p. 1449–1496.

  19. Pantua HD et al (2006) Requirements for the assembly and release of Newcastle disease virus-like particles. J Virol 80(22):11062–11073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Steward M et al (1993) RNA editing in Newcastle disease virus. J Gen Virol 74(Pt 12):2539–2547

    Article  CAS  PubMed  Google Scholar 

  21. Kim LM et al (2007) Phylogenetic diversity among low-virulence Newcastle disease viruses from waterfowl and shorebirds and comparison of genotype distributions to those of poultry-origin isolates. J Virol 81(22):12641–12653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dimitrov KM et al (2019) Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect Genet Evol 74:103917

    Article  PubMed  PubMed Central  Google Scholar 

  23. Diel DG et al (2012) Genetic diversity of avian paramyxovirus type 1: proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infection, Grnrtics and Evol 12(8):1770–1779

    Article  Google Scholar 

  24. Jadhav A et al (2020) Genomic diversity and evolution of quasispecies in Newcastle disease virus infections. Viruses 12(11):1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Awan MA, Otte MJ, James AD (1994) The epidemiology of Newcastle disease in rural poultry: a review. Avian Pathol 23(3):405–423

    Article  CAS  PubMed  Google Scholar 

  26. Molouki A et al (2019) NDV subgenotype VII(L) is currently circulating in commercial broiler farms of Iran, 2017–2018. Trop Anim Health Prod 51(5):1247–1252

    Article  PubMed  Google Scholar 

  27. Ravishankar C et al (2022) Detection of Newcastle disease virus and assessment of associated relative risk in backyard and commercial poultry in Kerala. India Vet Med Sci 8(3):1146–1156

    Article  CAS  PubMed  Google Scholar 

  28. Napit R et al (2023) Newcastle disease burden in Nepal and efficacy of Tablet I2 vaccine in commercial and backyard poultry production. PLoS ONE 18(3):e0280688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morla S et al (2014) Complete genome sequence of a Newcastle disease virus isolate from an outbreak in northern India. Genome Announc. https://doi.org/10.1128/genomea.00342-14

    Article  PubMed  PubMed Central  Google Scholar 

  30. Singh K et al (2023) Quasispecies nature of RNA viruses: Lessons from the Past. Vaccines 11(2):308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cardenas Garcia S et al (2013) Molecular epidemiology of Newcastle disease in Mexico and the potential spillover of viruses from poultry into wild bird species. Appl Environ Microbiol 79(16):4985–4992

    Article  PubMed  PubMed Central  Google Scholar 

  32. Welch CN et al (2019) Genomic comparison of Newcastle disease viruses isolated in Nigeria between 2002 and 2015 reveals circulation of highly diverse genotypes and spillover into wild birds. Arch Virol 164(8):2031–2047

    Article  CAS  PubMed  Google Scholar 

  33. Petersen J, Dalal S, Jhala D (2021) Criticality of in-house preparation of viral transport medium in times of shortage during COVID-19 pandemic. Lab Med 52(2):e39–e45

    Article  PubMed  Google Scholar 

  34. Paldurai A et al (2010) Complete genome sequence of highly virulent neurotropic Newcastle disease virus strain Texas GB. Virus Genes 41(1):67–72

    Article  CAS  PubMed  Google Scholar 

  35. Khadzhiev G (1982) Plaque formation by strains of Newcastle disease virus in monolayers of chick embryo fibroblasts. Vet Med Nauki 19(2):35–45

    CAS  PubMed  Google Scholar 

  36. Terregino C, Capua I (2009) Conventional Diagnosis of Newcastle Disease Virus Infection. In: Capua I, Alexander DJ (eds) Avian Influenza and Newcastle Disease: A Field and Laboratory Manual. Springer Milan, Milano, pp 123–125

    Chapter  Google Scholar 

  37. OIE, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2022. 2022.

  38. Masoudi-Nejad A et al (2006) EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res 34(Suppl_2):W459-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tamura K et al (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alexander DJ (2000) Newcastle disease and other avian paramyxoviruses. Rev Sci Tech 19(2):443–462

    Article  CAS  PubMed  Google Scholar 

  41. Sharma B et al (2012) Isolation of Newcastle disease virus from a non-avian host (sheep) and its implications. Adv Virol 157(8):1565–1567

    CAS  Google Scholar 

  42. Chen S et al (2013) Genomic characterisation of a lentogenic Newcastle disease virus strain HX01 isolated from sick pigs in China. Virus Genes 46(2):264–270

    Article  CAS  PubMed  Google Scholar 

  43. Toyoda T et al (1987) Structural comparison of the cleavage-activation site of the fusion glycoprotein between virulent and avirulent strains of Newcastle disease virus. Virol 158(1):242–247

    Article  CAS  Google Scholar 

  44. Glickman RL et al (1988) Quantitative basic residue requirements in the cleavage-activation site of the fusion glycoprotein as a determinant of virulence for Newcastle disease virus. J Virol 62(1):354–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sakaguchi T et al (1989) Newcastle disease virus evolution: I. Multiple lineages defined by sequence variability of the hemagglutinin-neuraminidase gene. J Virol 169(2):260–272

    Article  CAS  Google Scholar 

  46. de Leeuw O, Peeters B (1999) Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae. J Gen Virol 80(1):131–136

    Article  PubMed  Google Scholar 

  47. Yu M et al (1998) Sequence analysis of the Hendra virus nucleoprotein gene: comparison with other members of the subfamily Paramyxovirinae. J Gen Virol 79(Pt 7):1775–1780

    Article  CAS  PubMed  Google Scholar 

  48. Schnell MJ, Conzelmann KK (1995) Polymerase activity of in vitro mutated rabies virus L protein. Virology 214(2):522–530

    Article  CAS  PubMed  Google Scholar 

  49. Ayala AJ et al (2016) Presence of vaccine-derived Newcastle disease viruses in wild birds. PLoS ONE 11(9):e0162484

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rohaim MA et al (2017) Reverse spillover of avian viral vaccine strains from domesticated poultry to wild birds. Vaccine 35(28):3523–3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Upadhyaya S, Raj M (2013) Management, study on avian biodiversity of north-east India with special reference to the conservation of threatened species. Int J Bio-Res Stress Manag 4(2):270–277

    Google Scholar 

  52. Inagaki A et al (2022) Carcass detection and consumption by facultative scavengers in forest ecosystem highlights the value of their ecosystem services. Sci Rep 12(1):16451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Olson ZH, Beasley JC, Rhodes OE Jr (2016) Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11(2):e0147798

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ayala AJ, Yabsley MJ, Hernandez SM (2020) A review of pathogen transmission at the backyard chicken-wild bird interface. Front Vet Sci 7:539925

    Article  PubMed  PubMed Central  Google Scholar 

  55. Xiang B et al (2017) Spillover of Newcastle disease viruses from poultry to wild birds in guangdong province, southern China. Infect Genet Evol 55:199–204

    Article  PubMed  Google Scholar 

  56. Devlin JM et al (2016) Impacts of poultry vaccination on viruses of wild bird. Curr Opin Virol 19:23–29

    Article  PubMed  Google Scholar 

  57. Naggar RFE, Rohaim MA, Munir M (2020) Potential reverse spillover of infectious bursal disease virus at the interface of commercial poultry and wild birds. Virus Genes 56(6):705–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bansal N et al (2022) Prevalence of Newcastle disease virus in wild and migratory birds in Haryana. India Avian Dis 66(2):141–147

    PubMed  Google Scholar 

  59. Roy P et al (1998) Velogenic Newcastle disease virus in captive wild birds. Tropical Animal Health 30:299–303

    Article  CAS  Google Scholar 

  60. Khulape SA et al (2014) Genetic characterization and pathogenicity assessment of Newcastle disease virus isolated from wild peacock. Virus Genes 49(3):449–455

    Article  CAS  PubMed  Google Scholar 

  61. Shriner SA, Root JJ (2020) A Review of avian influenza a virus associations in synanthropic birds. Viruses 12(11):1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zeynalova S et al (2015) Biosurveillance of avian influenza and Newcastle disease viruses in the Barda region of Azerbaijan using real time RT-PCR and hemagglutination inhibition. Front Microbiol 6:1128

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The virus research in our laboratory is currently supported by the Department of Biotechnology, Government of India (BT/PR41246/NER/95/1685/2020) and Department of Health Research, Government of India (NER/71/2020-ECD-I).

Author information

Authors and Affiliations

Authors

Contributions

Shinjini Bhattacharya: Conceptualization, Data curation, Formal analysis, Methodology, Visualization, Writing—original draftPankaj Deka: Conceptualization, Data curation, Formal analysis, Methodology. Sangeeta Das: Methodology, Samshul Ali: Methodology, Bhaskar Choudhury: Methodology, Parikshit Kakati: Methodology, Sachin Kumar: Conceptualization, Methodology, Funding acquisition, Investigation, Project administration, Resources, Supervision, Validation, Writing—review & editing.

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The study was conducted following the guidelines of the institutional biosafety committee (IBSC/2020/SEPT/SK/BSBE/6).

Additional information

Edited by Takeshi Noda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Deka, P., Das, S. et al. Spillover of Newcastle disease virus to Himalayan Griffon vulture: a possible food-based transmission. Virus Genes (2024). https://doi.org/10.1007/s11262-024-02072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11262-024-02072-9

Keywords

Navigation