Skip to main content

Advertisement

Log in

P4 protein of an Indian isolate of rice tungro bacilliform virus modulates gene silencing

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Plant hosts and their viral pathogens are engaged in a constant cycle of defense and counter-defense as part of a molecular arms race, principal among them being the plant RNAi defense and the viral RNAi suppressor counter-defense. Rice tungro bacilliform virus (RTBV), member of the family Caulimoviridae, genus Tungrovirus, species Tungrovirus oryzae, infects rice in South- and Southeast Asia and causes severe symptoms of stunting, yellow-orange discoloration and twisting of leaf tips. To better understand the possible counter-defensive roles of RTBV against the host RNAi defense system, we explored the ability of the P4 protein of an Indian isolate of RTBV to act as a possible modulator of RNAi. Using a transient silencing and silencing suppression assay in Nicotiana benthamiana, we show that P4 not only displays an RNAi suppressor function, but also potentially enhances RNAi. The results also suggests that the N-terminal 168 amino acid residues of P4 are sufficient to maintain RNAi suppressor activity. Taken together with the earlier reports this work strengthens the view that the P4 protein carries out RNAi suppressor and a potential RNAi enhancer function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data generated during and/or analyzed during the current study are available in the manuscript itself.

References

  1. Borah BK, Sharma S, Kant R, Johnson AM, Saigopal DV, Dasgupta I (2013) Bacilliform DNA-containing plant viruses in the tropics: commonalities within a genetically diverse group. Mol Plant Pathol 14:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hull R (1996) Molecular biology of Rice tungro viruses. Annu Rev Phytopathol 34:275–297

    CAS  PubMed  Google Scholar 

  3. Hibino H, Roechan M, Sudarisman S (1978) Association of two types of virus particles with penyakit habang (tungro Disease) of rice in Indonesia. Phytopathology 68:1412–1416

    Google Scholar 

  4. Sanfaçon H, Wellink J, Gall OL, Karasev A, Vlugt RV, Wetzel T (2009) Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch Virol 154:899–907

    PubMed  Google Scholar 

  5. Bao Y, Hull R (1992) Characterization of the discontinuities in rice tungro bacilliform virus DNA. J Gen Virol 73:1297–1301

    CAS  PubMed  Google Scholar 

  6. Hay JM, Jones MC, Blakebrough ML, Dasgupta I, Davies JW, Hull R (1991) An analysis of the sequence of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acid Res 19:2615–2621

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Qu RD, Bhattacharyya M, Laco GS, De Kochko A, Rao BL, Kaniewska MB, Elmer JS, Rochester DE, Smith CE, Beachy RN (1991) Characterization of the genome of Rice tungro bacilliform virus: comparison with Commelina yellow mottle virus and caulimoviruses. Virology 185:354–364

    CAS  PubMed  Google Scholar 

  8. Hay J, Grieco F, Druka A, Pinner M, Lee SC, Hull R (1994) Detection of rice tungro bacilliform virus gene products in vivo. Virology 205:430–437

    CAS  PubMed  Google Scholar 

  9. Hagen LS, Jacquemond M, Lepingle A, Lot H, Tepfer M (1993) Nucleotide sequence and genomic organization of cacao swollen shoot virus. Virology 196:619–628

    CAS  PubMed  Google Scholar 

  10. Rajeswaran R, Golyaev V, Seguin J, Zvereva A, Farinelli L, Pooggin M (2014) Interactions of rice tungro bacilliform pararetrovirus and its protein P4 with plant RNA silencing machinery. Mol Plant Microbe Interact 12:1370–1378

    Google Scholar 

  11. Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:5

    Google Scholar 

  12. Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11:745–760

    CAS  PubMed  Google Scholar 

  13. Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Voinnet O (2005) Non-cell autonomous RNA silencing. FEBS Lett 579:5858–5871

    CAS  PubMed  Google Scholar 

  15. Dunoyer P, Himber C, Voinnet O (2006) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens Infections. Nat Genet 38:258–263

    CAS  PubMed  Google Scholar 

  16. Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O (2010) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–916

    CAS  PubMed  ADS  Google Scholar 

  17. Kalantidis K, Schumacher HT, Alexiadis T, Helm JM (2008) RNA silencing movement in plants. Biol Cell 100:13–26

    CAS  PubMed  Google Scholar 

  18. Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479:85–103

    PubMed  Google Scholar 

  20. Nath N, Mathur S, Dasgupta I (2002) Molecular analysis of two complete rice tungro bacilliform virus genomic sequences from India. Arch Virol 147:1173–1187

    CAS  PubMed  Google Scholar 

  21. Roth BM, Pruss GJ, Vance VB (2004) Plant viral suppressors of RNA silencing. Virus Res 102:97–108

    CAS  PubMed  Google Scholar 

  22. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    CAS  PubMed  ADS  Google Scholar 

  23. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  25. Naresh M, Purkayastha A, Dasgupta I (2023) Silencing suppressor protein PRT of rice tungro bacilliform virus interacts with the plant RNA silencing-related protein SGS3. Virology 581:71–80

    CAS  PubMed  Google Scholar 

  26. Alizon S, Hurford A, Mideo N, Van Baalen M (2009) Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol 22(2):245–259

    CAS  PubMed  Google Scholar 

  27. Doumayrou J, Avellan A, Froissart R, Michalakis Y (2013) An experimental test of the transmission virulence trade-off hypothesis in a plant virus. Evolution 67(2):477–486

    CAS  PubMed  Google Scholar 

  28. Sharma S, Rabindran R, Robin S, Dasgupta I (2011) Analysis of the complete DNA sequence of Rice tungro bacilliform virus from southern India indicates it to be a product of recombination. Arch Virol 156:2257–2262

    CAS  PubMed  Google Scholar 

  29. Mathur S, Dasgupta I (2013) Further support of genetic conservation in Indian isolates of Rice tungro bacilliform virus by sequence analysis of an isolate from North-Western India. Virus Genes 46:387–391

    CAS  PubMed  Google Scholar 

  30. Chao JA, Lee JH, Chapados BR, Debler EW, Schneemann A, Williamson JR (2005) Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat Struct Mol Biol 12:952–957

    CAS  PubMed  Google Scholar 

  31. Chen HY, Yang J, Lin C, Yuan A (2008) Structural basis for RNA-silencing suppression by tomato Aspermy virus protein 2b. EMBO Rep 9:754–760

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vinutha T, Kumar G, Garg V, Canto T, Palukaitis P, Ramesh SV, Praveen S (2018) Tomato geminivirus encoded RNAi suppressor protein, AC4 interacts with host AGO4 and precludes viral DNA methylation. Gene 678:184–195

    CAS  PubMed  Google Scholar 

  33. Wang L, Ding Y, He L, Zhang G, Zhu JK, Lozano-Duran R (2020) A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. Elife 9:e55542

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ji LH, Ding SW (2001) The suppressor of transgene RNA silencing encoded by cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. Mol Plant Microbe Interact 14(6):715–724

    CAS  PubMed  Google Scholar 

  35. Love AJ, Geri C, Laird J, Carr C, Yun BW (2012) Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS ONE 7(10):e47535

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Hunter LJR, Westwood JH, Heath G, Macaulay K, Smith AG (2013) Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis. PLoS ONE 8(6):e66530

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Wang Y, Gong Q, Wu Y, Huang F, Ismayil A (2021) A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe 29(9):1393–1406

    CAS  PubMed  Google Scholar 

  38. Malcuit I, Marano MR, Kavanagh TA, De Jong W, Forsyth A, Baulcombe DC (1999) The 25-kDa movement protein of PVX elicits Nb-mediated hypersensitive cell death in potato. Mol Plant Microbe Interact 12(6):536–543

    CAS  Google Scholar 

  39. Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA of plants. Proc Natl Acad Sci 96(24):14147–14152

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Ronde D, Pasquier A, Ying S, Butterbach P, Lohuis D, Kormelink R (2014) Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Mol Plant Pathol 15(2):185–195

    PubMed  Google Scholar 

  41. Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12(10):1917–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Baulcombe DC (2022) The role of viruses in identifying and analyzing RNA silencing. Annual Rev Virol 9:353–373

    CAS  Google Scholar 

  43. Devers EA, Brosnan C, Sarazin A, Albertini D, Amsler AC, Brioudes F, Jullien PE, Lim P, Schott G, Voinnet O (2020) Movement and differential consumption of short interfering RNA duplexes underlie mobile RNA interference. Nat Plants 6:789–799

    CAS  PubMed  Google Scholar 

  44. Yan Y, Ham BK, Chong YH, Yeh SD, Lucas WJ (2020) A plant SMALL RNA-BINDING PROTEIN 1 family mediates cell-to-cell trafficking of RNAi signals. Mol Plant 13:321–335

    CAS  PubMed  Google Scholar 

  45. Yan Y, Gan J, Tao Y, Okita TW, Tian L (2022) RNA-Binding proteins: the key modulator in stress granule formation and abiotic stress response. Front Plant Sci 13:882596

    PubMed  PubMed Central  Google Scholar 

  46. Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ (2007) Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci 104:14741–14746

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Funding

MN acknowledges Rajiv Gandhi National Fellowship by University Grants Commission, New Delhi. ID acknowledges the financial support from University of Delhi (R&D and DU-DST PURSE) for this study.

Author information

Authors and Affiliations

Authors

Contributions

ID planned and conceived the experiments, AP cloned the viral genes, MN performed infiltrations, cloning, northern blot analysis, PCR-based assays, quantitative assays, ID acquired the funds and MN and ID wrote the paper.

Corresponding author

Correspondence to Indranil Dasgupta.

Ethics declarations

Competing interests

The authors have no financial or non-financial interests to disclose.

Ethical approval

This study did not require any ethics approval.

Consent to participate

This study did not require any participatory consent.

Consent to publish

This study did not require any consent to publish.

Additional information

Edited by Maija Pollari.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2849.7 kb)

Supplementary material 2 (DOCX 16.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naresh, M., Purkayastha, A. & Dasgupta, I. P4 protein of an Indian isolate of rice tungro bacilliform virus modulates gene silencing. Virus Genes 60, 55–64 (2024). https://doi.org/10.1007/s11262-023-02039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-02039-2

Keywords

Navigation