Skip to main content

Advertisement

Log in

MiR-BART1-3p and BART18-5p inhibit cell migration, proliferation and activate autophagy in Epstein-Barr virus-associated gastric cancer by targeting erythropoietin-producing human hepatocellular 2

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Epstein-Barr virus (EBV) is a human tumor-associated virus that encodes various microRNAs. EBV infection causes a variety of malignant tumors, including nasopharyngeal carcinoma and gastric cancer, etc. EBV-associated gastric cancer (EBVaGC) has unique molecular characteristics from other gastric cancers, but its pathogenic mechanism remains unclear. In recent years, erythropoietin-producing human hepatocellular 2 (EphA2) has been reported to be highly expressed in various cancers and promote tumor growth and metastasis. As an important cancer oncogene, EphA2 is a potential therapeutic target. However, whether EBV is involved in the regulation of EphA2 and thus affects the progression of EBVaGC remains unclear. In this study, we found that the expression of EphA2 in EBVaGC cells was significantly lower than that in EBV-negative gastric cancer (EBVnGC) cells. Additionally, overexpression of EphA2 in EBVaGC cells promoted migration and proliferation, and inhibited autophagy. EBV-miR-BART1-3p and BART18-5p were found to target the 3’-UTR of EphA2 and down-regulate its expression. Our results suggest that EBV may be involved in gastric cancer progression by targeting EphA2 through BART1-3p and BART18-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets analysed during the current study are referenced in the text and publicly available.

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Figueiredo C, Camargo MC, Leite M, Fuentes-Pananá EM, Rabkin CS, Machado JC (2017) Pathogenesis of Gastric Cancer: Genetics and Molecular Classification [published correction appears in Curr Top Microbiol Immunol. Curr Top Microbiol Immunol 400:277–304. https://doi.org/10.1007/978-3-319-50520-6_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thrift AP, El-Serag HB (2020) Burden of gastric cancer. Clin Gastroenterol Hepatol 18(3):534–542. https://doi.org/10.1016/j.cgh.2019.07.045

    Article  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202–209. https://doi.org/10.1038/nature13480

    Article  CAS  Google Scholar 

  5. Shinozaki-Ushiku A, Kunita A, Fukayama M (2015) Update on Epstein-Barr virus and gastric cancer (review). Int J Oncol 46(4):1421–1434. https://doi.org/10.3892/ijo.2015.2856

    Article  CAS  PubMed  Google Scholar 

  6. Kaneda A, Matsusaka K, Aburatani H, Fukayama M (2012) Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res 72(14):3445–3450. https://doi.org/10.1158/0008-5472.CAN-11-3919

    Article  CAS  PubMed  Google Scholar 

  7. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from burkitt’s lymphoma. Lancet 1(7335):702–703. https://doi.org/10.1016/s0140-6736(64)91524-7

    Article  CAS  PubMed  Google Scholar 

  8. Young LS, Yap LF, Murray PG (2016) Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 16(12):789–802. https://doi.org/10.1038/nrc.2016.92

    Article  CAS  PubMed  Google Scholar 

  9. Hausen A, Brink AA, Craanen ME, Middeldorp JM, Meijer CJ, Brule AJ (2000) Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res 60(10):2745–2748

    PubMed  Google Scholar 

  10. Pfeffer S, Zavolan M, Grässer FA et al (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736. https://doi.org/10.1126/science.1096781

    Article  CAS  PubMed  Google Scholar 

  11. Cai X, Schäfer A, Lu S et al (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2(3):e23. https://doi.org/10.1371/journal.ppat.0020023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Slack FJ, Chinnaiyan AM (2019) The role of non-coding RNAs in oncology. Cell 179(5):1033–1055. https://doi.org/10.1016/j.cell.2019.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anastasiadou E, Jacob LS, Slack FJ (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18(1):5–18. https://doi.org/10.1038/nrc.2017.99

    Article  CAS  PubMed  Google Scholar 

  14. Banerjee AS, Pal AD, Banerjee S (2013) Epstein-Barr virus-encoded small non-coding RNAs induce cancer cell chemoresistance and migration. Virology 443(2):294–305. https://doi.org/10.1016/j.virol.2013.05.020

    Article  CAS  PubMed  Google Scholar 

  15. Kim DN, Chae HS, Oh ST et al (2007) Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J Virol 81(2):1033–1036. https://doi.org/10.1128/JVI.02271-06

    Article  CAS  PubMed  Google Scholar 

  16. Xiao T, Xiao Y, Wang W, Tang YY, Xiao Z, Su M (2020) Targeting EphA2 in cancer. J Hematol Oncol 13(1):114. https://doi.org/10.1186/s13045-020-00944-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buckens OJ, El Hassouni B, Giovannetti E, Peters GJ (2020) The role of Eph receptors in cancer and how to target them: novel approaches in cancer treatment. Expert Opin Investig Drugs 29(6):567–582. https://doi.org/10.1080/13543784.2020.1762566

    Article  CAS  PubMed  Google Scholar 

  18. Chen J, Sathiyamoorthy K, Zhang X et al (2018) Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus. Nat Microbiol 3(2):172–180. https://doi.org/10.1038/s41564-017-0081-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Connolly SA, Jardetzky TS, Longnecker R (2021) The structural basis of herpesvirus entry. Nat Rev Microbiol 19(2):110–121. https://doi.org/10.1038/s41579-020-00448-w

    Article  CAS  PubMed  Google Scholar 

  20. Takasaka N, Tajima M, Okinaga K et al (1998) Productive infection of Epstein-Barr virus (EBV) in EBV-genome-positive epithelial cell lines (GT38 and GT39) derived from gastric tissues. Virology 247(2):152–159. https://doi.org/10.1006/viro.1998.9231

    Article  CAS  PubMed  Google Scholar 

  21. Oh ST, Seo JS, Moon UY et al (2004) A naturally derived gastric cancer cell line shows latency I Epstein-Barr virus infection closely resembling EBV-associated gastric cancer. Virology 320(2):330–336. https://doi.org/10.1016/j.virol.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  22. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117(Pt 13):2805–2812. https://doi.org/10.1242/jcs.01131

    Article  CAS  PubMed  Google Scholar 

  23. Mathew R, Karp CM, Beaudoin B et al (2009) Autophagy suppresses tumorigenesis through elimination of p62 [published correction appears in Cell 2011 Apr 15;145(2):322]. Cell 137(6):1062–1075. https://doi.org/10.1016/j.cell.2009.03.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180. https://doi.org/10.1038/nrc2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Markosyan N, Li J, Sun YH et al (2019) Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2). J Clin Invest 129(9):3594–3609. https://doi.org/10.1172/JCI127755

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miao H, Li DQ, Mukherjee A et al (2009) EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell 16(1):9–20. https://doi.org/10.1016/j.ccr.2009.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tandon M, Vemula SV, Mittal SK (2011) Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets 15(1):31–51. https://doi.org/10.1517/14728222.2011.538682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amato KR, Wang S, Hastings AK et al (2014) Genetic and pharmacologic inhibition of EPHA2 promotes apoptosis in NSCLC. J Clin Invest 124(5):2037–2049. https://doi.org/10.1172/JCI72522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mao L, Yuan W, Cai K et al (2021) EphA2-YES1-ANXA2 pathway promotes gastric cancer progression and metastasis. Oncogene 40(20):3610–3623. https://doi.org/10.1038/s41388-021-01786-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang C, Yuan W, Lai C et al (2020) EphA2-to-YAP pathway drives gastric cancer growth and therapy resistance. Int J Cancer 146(7):1937–1949. https://doi.org/10.1002/ijc.32609

    Article  CAS  PubMed  Google Scholar 

  31. Hippo Y, Yashiro M, Ishii M et al (2001) Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res 61(3):889–895

    CAS  PubMed  Google Scholar 

  32. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695. https://doi.org/10.1016/j.cell.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  33. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477. https://doi.org/10.1016/s1534-5807(04)00099-1

    Article  CAS  PubMed  Google Scholar 

  34. Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7(12):961–967. https://doi.org/10.1038/nrc2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsang CM, Tsao SW (2015) The role of Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Virol Sin 30(2):107–121. https://doi.org/10.1007/s12250-015-3592-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marquitz AR, Mathur A, Chugh PE, Dittmer DP, Raab-Traub N (2014) Expression profile of microRNAs in Epstein-Barr virus-infected AGS gastric carcinoma cells. J Virol 88(2):1389–1393. https://doi.org/10.1128/JVI.02662-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong M, Gong LP, Chen JN et al (2020) EBV-miR-BART10-3p and EBV-miR-BART22 promote metastasis of EBV-associated gastric carcinoma by activating the canonical Wnt signaling pathway. Cell Oncol (Dordr) 43(5):901–913. https://doi.org/10.1007/s13402-020-00538-0

    Article  CAS  PubMed  Google Scholar 

  38. Zheng X, Wang J, Wei L et al (2018) Epstein-Barr Virus MicroRNA miR-BART5–3p Inhibits p53 Expression. J Virol. 92(23):e01022-18. https://doi.org/10.1128/JVI.01022-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harold C, Cox D, Riley KJ (2016) Epstein-Barr viral microRNAs target caspase 3. Virol J. 13(1):145. https://doi.org/10.1186/s12985-016-0602-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoon JH, Min K, Lee SK (2020) Epstein-Barr Virus miR-BART17–5p Promotes Migration and Anchorage-Independent Growth by Targeting Kruppel-Like Factor 2 in Gastric Cancer. Microorganisms 8(2):258. https://doi.org/10.3390/microorganisms8020258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang J, Ge J, Wang Y et al (2022) EBV miRNAs BART11 and BART17–3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nat Commun 13(1):866. https://doi.org/10.1038/s41467-022-28479-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Zhang Y, Liu W et al (2020) MiR-BART1-5p targets core 2β-1,6-acetylglucosaminyltransferase GCNT3 to inhibit cell proliferation and migration in EBV-associated gastric cancer. Virology 541:63–74. https://doi.org/10.1016/j.virol.2019.12.004

    Article  CAS  PubMed  Google Scholar 

  43. Choi H, Lee H, Kim SR, Gho YS, Lee SK (2013) Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol 87(14):8135–8144. https://doi.org/10.1128/JVI.03159-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Camargo MC, Murphy G, Koriyama C et al (2011) Determinants of Epstein-Barr virus-positive gastric cancer: an international pooled analysis. Br J Cancer 105(1):38–43. https://doi.org/10.1038/bjc.2011.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Camargo MC, Kim WH, Chiaravalli AM et al (2014) Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut 63(2):236–243. https://doi.org/10.1136/gutjnl-2013-304531

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shandong Province [ZR2020MH302; ZR2020MC020]; Qingdao Science and Technology Benefit the People Demonstration and Guidance Special Project (20-3-4-35-nsh).

Funding

Natural Science Foundation of Shandong Province, ZR2020MC020,ZR2020MH302, Qingdao Science and Technology Benefit the People Demonstration and Guidance Special Project, 20-3-4-35-nsh

Author information

Authors and Affiliations

Authors

Contributions

Bing Luo and Duo Shi conceived the experiments; Duo Shi performed the experiments; Wen Liu and Xing Zhang analyzed the experimental data; Duo Shi and Yan Zhang revised the manuscript. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Yan Zhang or Bing Luo.

Ethics declarations

Competing interests

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Edited by Juergen Richt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (TIF 1324 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Liu, W., Zhang, X. et al. MiR-BART1-3p and BART18-5p inhibit cell migration, proliferation and activate autophagy in Epstein-Barr virus-associated gastric cancer by targeting erythropoietin-producing human hepatocellular 2. Virus Genes 59, 703–715 (2023). https://doi.org/10.1007/s11262-023-02023-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-02023-w

Keywords

Navigation