Skip to main content

Advertisement

Log in

Antibacterial effects of single phage and phage cocktail against multidrug-resistant Klebsiella pneumoniae isolated from diabetic foot ulcer

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Diabetic foot ulcer (DFU) is associated with long-term hospitalization and amputation. Antibiotic resistance has made the infection eradication more difficult. Hence, seeking alternative therapies such as phage therapy seems necessary. Bacteriophages are viruses targeting specific bacterial species. Klebsiella pneumoniae (K. pneumoniae) is among causative agents of the DFU. In this study, the therapeutic effects of single phage and phage cocktail were investigated against multidrug-resistant (MDR) K. pneumonia isolated from DFU. Bacteriophages were isolated from animal feces and sewage samples, and were enriched and propagated using K. pneumoniae as the host. Thirty K. pneumoniae clinical isolates were collected from hospitalized patients with DFU. The antibiotic susceptibility pattern was determined using agar disk diffusion test. The phages’ morphological traits were determined using transmission electron microscopy (TEM). The killing effect of isolated phages was assessed using plaque assay. Four phage types were isolated and recognized including KP1, KP2, KP3, and KP4. The bacterial rapid regrowth was observed following each single phage-host interaction, but not phage cocktail due to the evolution of mutant strains. Phage cocktail demonstrated significantly higher antibacterial activity than each single phage (p < 0.05) without any bacterial regrowth. The employment of phage cocktail was promising for the eradication of MDR-K. pneumoniae isolates. The development of phage therapy in particular, phage cocktail is promising as an efficient approach to eradicate MDR-K. pneumoniae isolated from DFU. The application of a specific phage cocktail can be investigated to try and achieve the eradication of various infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sorber R, Abularrage CJ (2021) Diabetic foot ulcers: epidemiology and the role of multidisciplinary care teams. Semin Vasc Surg. https://doi.org/10.1053/j.semvascsurg.2021.02.006

    Article  PubMed  Google Scholar 

  2. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  PubMed  Google Scholar 

  3. Am AH, Ja G, Cl L, Db N, Rb A, Jv B, Cm W (2017) A bioluminescent Pseudomonas aeruginosa wound model reveals increased mortality of type 1 diabetic mice to biofilm infection. J Wound Care 26(Sup7):S24–S33

    Article  Google Scholar 

  4. Rathnayake A, Saboo A, Malabu UH, Falhammar H (2020) Lower extremity amputations and long-term outcomes in diabetic foot ulcers: a systematic review. World J Diabetes 11(9):391

    Article  PubMed  PubMed Central  Google Scholar 

  5. Edwards J, Stapley S (2010) Debridement of diabetic foot ulcers. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003556.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baltzis D, Eleftheriadou I, Veves A (2014) Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther 31:817–836

    Article  CAS  PubMed  Google Scholar 

  7. Alós JI (2015) Antibiotic resistance: a global crisis. Enferm Infecc Microbiol Clin 33(10):692–699

    Article  PubMed  Google Scholar 

  8. Medina E, Pieper DH (2016) Tackling threats and future problems of multidrug-resistant bacteria. Curr Top Microbiol Immunol 398:3–33

    CAS  PubMed  Google Scholar 

  9. Morozova VV, Vlassov VV, Tikunova NV (2018) Applications of bacteriophages in the treatment of localized infections in humans. Front Microbiol 9:1696

    Article  PubMed  PubMed Central  Google Scholar 

  10. Matta-Gutierrez G, Garcia-Morales E, Garcia-Alvarez Y, Álvaro-Afonso FJ, Molines-Barroso RJ, Lazaro-Martinez JL (2021) The influence of multidrug-resistant bacteria on clinical outcomes of diabetic foot ulcers: a systematic review. J Clin Med 10(9):1948

    Article  PubMed  PubMed Central  Google Scholar 

  11. Percival SL, Malone M, Mayer D, Salisbury AM, Schultz G (2018) Role of anaerobes in polymicrobial communities and biofilms complicating diabetic foot ulcers. Int Wound J 15(5):776–782

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pouget C, Dunyach-Remy C, Pantel A, Schuldiner S, Sotto A, Lavigne J-P (2020) Biofilms in diabetic foot ulcers: significance and clinical relevance. Microorganisms 8(10):1580

    Article  PubMed  PubMed Central  Google Scholar 

  13. Steffy K, Shanthi G, Maroky AS, Selvakumar S (2018) Synthesis and characterization of ZnO phytonanocomposite using Strychnos nux-vomica L.(Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer. J Adv Res. https://doi.org/10.1016/j.jare.2017.11.001

    Article  PubMed  Google Scholar 

  14. Shahi SK, Kumar A (2016) Isolation and genetic analysis of multidrug resistant bacteria from diabetic foot ulcers. Front Microbiol 6:1464

    Article  PubMed  PubMed Central  Google Scholar 

  15. Principi N, Silvestri E, Esposito S (2019) Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol 10:513

    Article  PubMed  PubMed Central  Google Scholar 

  16. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1(2):111–114

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gordillo Altamirano FL, Barr JJ (2019) Phage therapy in the postantibiotic era. Clin Microbiol Rev 32(2):e00018–e00066

    Article  Google Scholar 

  18. Bull J, Vimr E, Molineux I (2010) A tale of tails: sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli. Virology 398(1):79–86

    Article  CAS  PubMed  Google Scholar 

  19. Li C, Shi T, Sun Y, Zhang Y (2022) A novel method to create efficient phage cocktails via use of phage-resistant bacteria. Appl Environ Microbiol 88(6):e02321-e2323

    Article  Google Scholar 

  20. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN (2021) Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J Clin Microbiol 59(12):e00213-00221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khan ZA, Siddiqui MF, Park S (2019) Current and emerging methods of antibiotic susceptibility testing. Diagnostics 9(2):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Syal K, Mo M, Yu H, Iriya R, Jing W, Guodong S, Wang S, Grys TE, Haydel SE, Tao N (2017) Current and emerging techniques for antibiotic susceptibility tests. Theranostics 7(7):1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. (CLSI) calsi: Performance standards for antimicrobial susceptibility testing. In.; 2021.

  24. Akhtar M, Viazis S, Diez-Gonzalez F (2014) Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against Salmonella enterica serovars. Food Control 38:67–74

    Article  Google Scholar 

  25. Jokar J, Rahimian N, Ghasemian A, Najafipour S (2022) The antibacterial effects of cocktail and single forms of lytic phages belonging to Podoviridae and Myoviridae Families from sewage against Shigella sonnei and Shigella flexneri. BioMed Res Int. https://doi.org/10.1155/2022/7833565

    Article  PubMed  PubMed Central  Google Scholar 

  26. Clokie MR, Kropinski A: Methods and protocols, volume 1: Isolation, characterization, and interactions. Methods in molecular biology” Humana press 2009:69-81.

  27. Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages. Folia Microbiol 56:191–200

    Article  Google Scholar 

  28. D’Accolti M, Soffritti I, Mazzacane S, Caselli E (2021) Bacteriophages as a potential 360-degree pathogen control strategy. Microorganisms 9(2):261

    Article  PubMed  PubMed Central  Google Scholar 

  29. Strydom A, Witthuhn CR (2015) Listeria monocytogenes: a target for bacteriophage biocontrol. Compr Rev Food Sci Food Safety 14(6):694–704

    Article  Google Scholar 

  30. Loponte R, Pagnini U, Iovane G, Pisanelli G (2021) Phage therapy in veterinary medicine. Antibiotics 10(4):421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Easwaran M, De Zoysa M, Shin HJ (2020) Application of phage therapy: synergistic effect of phage EcSw (ΦEcSw) and antibiotic combination towards antibiotic-resistant Escherichia coli. Transbound Emerg Dis 67(6):2809–2817

    Article  CAS  PubMed  Google Scholar 

  32. Kosznik-Kwaśnicka K, Stasiłojć M, Grabowski Ł, Zdrojewska K, Węgrzyn G, Węgrzyn A (2022) Efficacy and safety of phage therapy against Salmonella enterica serovars Typhimurium and Enteritidis estimated by using a battery of in vitro tests and the Galleria mellonella animal model. Microbiol Res 261:127052

    Article  PubMed  Google Scholar 

  33. Jebri S, Rahmani F, Hmaied F (2021) Bacteriophages as antibiotic resistance genes carriers in agro-food systems. J Appl Microbiol 130(3):688–698

    Article  CAS  PubMed  Google Scholar 

  34. Atlas D: International diabetes federation. IDF Diabetes Atlas, 7th edn Brussels, Belgium: International Diabetes Federation 2015, 33.

  35. Zhang P, Zhang X, Brown J, Vistisen D, Sicree R, Shaw J, Nichols G (2010) Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(3):293–301

    Article  PubMed  Google Scholar 

  36. Armstrong DG, Swerdlow MA, Armstrong AA, Conte MS, Padula WV, Bus SA (2020) Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res 13(1):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shah SA, Sohail M, Khan S, Minhas MU, De Matas M, Sikstone V, Hussain Z, Abbasi M, Kousar M (2019) Biopolymer-based biomaterials for accelerated diabetic wound healing: a critical review. Int J Biol Macromol 139:975–993

    Article  CAS  PubMed  Google Scholar 

  38. Papanas N, Maltezos E (2009) The diabetic foot: a global threat and a huge challenge for Greece. Hippokratia 13(4):199

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yazdanpanah L, Nasiri M, Adarvishi S (2015) Literature review on the management of diabetic foot ulcer. World J Diabetes 6(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  40. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542

    Article  CAS  PubMed  Google Scholar 

  41. Iqbal A, Jan A, Wajid M, Tariq S (2017) Management of chronic non-healing wounds by hirudotherapy. World J Plastic Surg 6(1):9

    Google Scholar 

  42. Nakano M, Kalsi S, Morgan H (2018) Fast and sensitive isothermal DNA assay using microbead dielectrophoresis for detection of anti-microbial resistance genes. Biosens Bioelectron 117:583–589

    Article  CAS  PubMed  Google Scholar 

  43. Ayobami O, Brinkwirth S, Eckmanns T, Markwart R (2022) Antibiotic resistance in hospital-acquired ESKAPE-E infections in low-and lower-middle-income countries: a systematic review and meta-analysis. Emerging Microbes & Infections 11(1):443–451

    Article  CAS  Google Scholar 

  44. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325):629–655

    Article  CAS  Google Scholar 

  45. Manohar P, Tamhankar AJ, Lundborg CS, Nachimuthu R (2019) Therapeutic characterization and efficacy of bacteriophage cocktails infecting Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Front Microbiol 10:574

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mendes JJ, Leandro C, Mottola C, Barbosa R, Silva FA, Oliveira M, Vilela CL, Melo-Cristino J, Gorski A, Pimentel M (2014) In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J Med Microbiol 63(8):1055–1065

    Article  PubMed  Google Scholar 

  47. Cowley LA, Beckett SJ, Chase-Topping M, Perry N, Dallman TJ, Gally DL, Jenkins C (2015) Analysis of whole genome sequencing for the Escherichia coli O157: H7 typing phages. BMC Genom 16(1):1–13

    Article  CAS  Google Scholar 

  48. Culot A, Grosset N, Gautier M (2019) Overcoming the challenges of phage therapy for industrial aquaculture: a review. Aquaculture 513:734423

    Article  CAS  Google Scholar 

  49. McCallin S, Sacher JC, Zheng J, Chan BK (2019) Current state of compassionate phage therapy. Viruses 11(4):343

    Article  PubMed  PubMed Central  Google Scholar 

  50. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S (2018) Erratum: development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant acinetobacter baumannii infection (American Society for Microbiology (2017) 61: 10 (e00954–17). Antimicrob Agents Chemother 62(12):e02218-e2221

    Article  Google Scholar 

  51. Nobrega FL, Costa AR, Kluskens LD, Azeredo J (2015) Revisiting phage therapy: new applications for old resources. Trends Microbiol 23(4):185–191

    Article  CAS  PubMed  Google Scholar 

  52. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8(6):769–783

    Article  CAS  PubMed  Google Scholar 

  53. Khalifa L, Gelman D, Shlezinger M, Dessal AL, Coppenhagen-Glazer S, Beyth N, Hazan R (2018) Defeating antibiotic-and phage-resistant Enterococcus faecalis using a phage cocktail in vitro and in a clot model. Front Microbiol 9:326

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chen L, Yuan S, Liu Q, Mai G, Yang J, Deng D, Zhang B, Liu C, Ma Y (2018) In vitro design and evaluation of phage cocktails against Aeromonas salmonicida. Front Microbiol 9:1476

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tan D, Zhang Y, Cheng M, Le S, Gu J, Bao J, Qin J, Guo X, Zhu T (2019) Characterization of Klebsiella pneumoniae ST11 isolates and their interactions with lytic phages. Viruses 11(11):1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study has been written by the authors.

Funding

This study did not receive any funding in any form.

Author information

Authors and Affiliations

Authors

Contributions

J.J., R.S., N.R. and A.G. wrote the manuscript. G.G., A.R., E.Z., and S.N. edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sohrab Najafipour.

Ethics declarations

Competing interests

None.

Ethical approval

This study was ethically approved by Fasa University of Medical Sciences (Ethical Code: IR.FUMS.REC.1399.221).

Consent for publication

All the authors have consent of publication.

Additional information

Edited by Joachim J. Bugert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 552 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jokar, J., Saleh, R.O., Rahimian, N. et al. Antibacterial effects of single phage and phage cocktail against multidrug-resistant Klebsiella pneumoniae isolated from diabetic foot ulcer. Virus Genes 59, 635–642 (2023). https://doi.org/10.1007/s11262-023-02004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-02004-z

Keywords

Navigation