Skip to main content

Advertisement

Log in

Identification of monoclonal antibody targeting epitope on p72 trimeric spike of African swine fever virus

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

African swine fever virus (ASFV) is highly contagious and can cause lethal disease in pigs. ASFV p72 protein is a major capsid protein that presents as trimer in the virion. Epitopes on the surface of p72 trimer are considered as protective antigens. In this study, recombinant p72 protein and p72-baculovirus were constructed and obtained. Three monoclonal antibodies (mAbs) specific to ASFV p72 protein, designated as 1A3, 2B5 and 4A5, were generated. Among them, 4A5 showed strong reactivity with ASFV infected cells. Subsequently, the epitope recognized by 4A5 was mapped and identified using a series of overlapping peptides generated from p72 protein. IFA and western blot analyses showed that 4A5 recognized the linear epitope of p72 monomer located between amino acids 245–285 and recognized the conformational epitope located at the surface and top of the p72 trimer. These findings will enrich our knowledge regarding the epitope on p72 protein and provide valuable information for further characterization of the antigenicity and molecular functions of p72 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data generated or analyzed during this study are included in this published article.

References

  1. Dixon LK, Stahl K, Jori F, Vial L, Pfeiffer DU (2020) African swine fever epidemiology and control. Annu Rev Anim Biosci 8:221–246. https://doi.org/10.1146/annurev-animal-021419-083741

    Article  PubMed  Google Scholar 

  2. Ata EB, Li ZJ, Shi CW, Yang GL, Yang WT, Wang CF (2022) African swine fever virus: a raised global upsurge and a continuous threaten to pig husbandry. Microb Pathog 167:105561. https://doi.org/10.1016/j.micpath.2022.105561

    Article  CAS  PubMed  Google Scholar 

  3. Sanchez-Cordon PJ, Montoya M, Reis AL, Dixon LK (2018) African swine fever: a re-emerging viral disease threatening the global pig industry. Vet J 233:41–48. https://doi.org/10.1016/j.tvjl.2017.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, Zhang S, Cao P, Li X, Tian K, Qiu HJ, Hu R (2018) Emergence of African swine fever in China. Transbound Emerg Dis 65(6):1482–1484. https://doi.org/10.1111/tbed.12989

    Article  PubMed  Google Scholar 

  5. Alonso C, Borca M, Dixon L, Revilla Y, Rodriguez F, Escribano JM, Ictv Report C (2018) ICTV virus taxonomy profile: Asfarviridae. J Gen Virol 99(5):613–614. https://doi.org/10.1099/jgv.0.001049

    Article  CAS  PubMed  Google Scholar 

  6. Dixon LK, Chapman DA, Netherton CL, Upton C (2013) African swine fever virus replication and genomics. Virus Res 173(1):3–14. https://doi.org/10.1016/j.virusres.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  7. Alejo A, Matamoros T, Guerra M, Andres G (2018) A proteomic atlas of the African swine fever virus particle. J Virol. https://doi.org/10.1128/JVI.01293-18

    Article  PubMed  PubMed Central  Google Scholar 

  8. Salas ML, Andres G (2013) African swine fever virus morphogenesis. Virus Res 173(1):29–41. https://doi.org/10.1016/j.virusres.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  9. Wang N, Zhao D, Wang J, Zhang Y, Wang M, Gao Y, Li F, Wang J, Bu Z, Rao Z, Wang X (2019) Architecture of African swine fever virus and implications for viral assembly. Science 366(6465):640–644. https://doi.org/10.1126/science.aaz1439

    Article  CAS  PubMed  Google Scholar 

  10. Revilla Y, Perez-Nunez D, Richt JA (2018) African swine fever virus biology and vaccine approaches. Adv Virus Res 100:41–74. https://doi.org/10.1016/bs.aivir.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  11. Kollnberger SD, Gutierrez-Castaneda B, Foster-Cuevas M, Corteyn A, Parkhouse RME (2002) Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. J Gen Virol 83(Pt 6):1331–1342. https://doi.org/10.1099/0022-1317-83-6-1331

    Article  CAS  PubMed  Google Scholar 

  12. Yu M, Morrissy CJ, Westbury HA (1996) Strong sequence conservation of African swine fever virus p72 protein provides the molecular basis for its antigenic stability. Arch Virol 141(9):1795–1802. https://doi.org/10.1007/BF01718302

    Article  CAS  PubMed  Google Scholar 

  13. Geng R, Sun Y, Li R, Yang J, Ma H, Qiao Z, Lu Q, Qiao S, Zhang G (2022) Development of a p72 trimer-based colloidal gold strip for detection of antibodies against African swine fever virus. Appl Microbiol Biotechnol 106(7):2703–2714. https://doi.org/10.1007/s00253-022-11851-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu W, Meng K, Zhang Y, Bu Z, Zhao D, Meng G (2021) Lateral flow assay for the detection of African swine fever virus antibodies using gold nanoparticle-labeled acid-treated p72. Front Chem 9:804981. https://doi.org/10.3389/fchem.2021.804981

    Article  CAS  PubMed  Google Scholar 

  15. Chen D, Wang D, Wang C, Wei F, Zhao H, Lin X, Wu S (2021) Application of an AlphaLISA method for rapid sensitive detection of African swine fever virus in porcine serum. Appl Microbiol Biotechnol 105(11):4751–4759. https://doi.org/10.1007/s00253-021-11339-2

    Article  CAS  PubMed  Google Scholar 

  16. Gomez-Puertas P, Rodriguez F, Oviedo JM, Ramiro-Ibanez F, Ruiz-Gonzalvo F, Alonso C, Escribano JM (1996) Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J Virol 70(8):5689–5694. https://doi.org/10.1128/jvi.70.8.5689-5694.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu S, Luo Y, Wang Y, Li S, Zhao Z, Bi Y, Sun J, Peng R, Song H, Zhu D, Sun Y, Li S, Zhang L, Wang W, Sun Y, Qi J, Yan J, Shi Y, Zhang X, Wang P, Qiu HJ, Gao GF (2019) Cryo-EM structure of the African swine fever virus. Cell Host Microbe 26(6):836–843. https://doi.org/10.1016/j.chom.2019.11.004

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Ma B, Qian N, Zhang F, Tan X, Lei J, Xiang Y (2019) Structure of the African swine fever virus major capsid protein p72. Cell Res 29(11):953–955. https://doi.org/10.1038/s41422-019-0232-x

    Article  PubMed  PubMed Central  Google Scholar 

  19. Achenbach JE, Gallardo C, Nieto-Pelegrin E, Rivera-Arroyo B, Degefa-Negi T, Arias M, Jenberie S, Mulisa DD, Gizaw D, Gelaye E, Chibssa TR, Belaye A, Loitsch A, Forsa M, Yami M, Diallo A, Soler A, Lamien CE, Sanchez-Vizcaino JM (2017) Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transbound Emerg Dis 64(5):1393–1404. https://doi.org/10.1111/tbed.12511

    Article  CAS  PubMed  Google Scholar 

  20. Yin D, Geng R, Shao H, Ye J, Qian K, Chen H, Qin A (2022) Identification of novel linear epitopes in P72 protein of African swine fever virus recognized by monoclonal antibodies. Front Microbiol 13:1055820. https://doi.org/10.3389/fmicb.2022.1055820

    Article  PubMed  PubMed Central  Google Scholar 

  21. Borca MV, Irusta P, Carrillo C, Afonso CL, Burrage T, Rock DL (1994) African swine fever virus structural protein p72 contains a conformational neutralizing epitope. Virology 201(2):413–418. https://doi.org/10.1006/viro.1994.1311

    Article  CAS  PubMed  Google Scholar 

  22. Wardley RC, Wilkinson PJ (1978) The growth of virulent African swine fever virus in pig monocytes and macrophages. J Gen Virol 38(1):183–186. https://doi.org/10.1099/0022-1317-38-1-183

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Li Y, Xie Z, Ao Q, Di D, Yu W, Lv L, Zhong Q, Song Y, Liao X, Song Q, Wang H, Chen H (2021) Development and in vivo evaluation of MGF100–1R deletion mutant in an African swine fever virus Chinese strain. Vet Microbiol 261:109208. https://doi.org/10.1016/j.vetmic.2021.109208

    Article  CAS  PubMed  Google Scholar 

  24. Liu J, Mei N, Wang Y, Shi X, Chen H (2021) Identification of a novel immunological epitope on Hexon of fowl adenovirus serotype 4. AMB Express 11(1):153. https://doi.org/10.1186/s13568-021-01309-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muangkram Y, Sukmak M, Wajjwalku W (2015) Phylogeographic analysis of African swine fever virus based on the p72 gene sequence. Genet Mol Res 14(2):4566–4574. https://doi.org/10.4238/2015.May.4.15

    Article  CAS  PubMed  Google Scholar 

  26. Cobbold C, Windsor M, Wileman T (2001) A virally encoded chaperone specialized for folding of the major capsid protein of African swine fever virus. J Virol 75(16):7221–7229. https://doi.org/10.1128/JVI.75.16.7221-7229.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Epifano C, Krijnse-Locker J, Salas ML, Rodriguez JM, Salas J (2006) The African swine fever virus nonstructural protein pB602L is required for formation of the icosahedral capsid of the virus particle. J Virol 80(24):12260–12270. https://doi.org/10.1128/JVI.01323-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heimerman ME, Murgia MV, Wu P, Lowe AD, Jia W, Rowland RR (2018) Linear epitopes in African swine fever virus p72 recognized by monoclonal antibodies prepared against baculovirus-expressed antigen. J Vet Diagn Invest 30(3):406–412. https://doi.org/10.1177/1040638717753966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was funded by the National Key Research and Development Program of China (2021YFD1801300 and 2021YFD1801401), National Nature Science Foundation (32170161) and Central Public-interest Scientific Institution Basal Research Fund (Y2022PT11). The authors would like to thank these.

Funding

This research work was funded by the National Key Research and Development Program of China (2021YFD1801300 and 2021YFD1801401), National Nature Science Foundation (32170161) and Central Public-interest Scientific Institution Basal Research Fund (Y2022PT11).

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived and designed by HC. XD, YL, ZX et al. performed experiments. HC, JL, ZC and XD analyzed the data. JL and HC wrote the paper. HC supervised all the experiments. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Jingyi Liu or Hongjun Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Edited by Juergen Richt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Liu, Y., Chen, Z. et al. Identification of monoclonal antibody targeting epitope on p72 trimeric spike of African swine fever virus. Virus Genes 59, 582–590 (2023). https://doi.org/10.1007/s11262-023-02003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-02003-0

Keywords

Navigation