Skip to main content
Log in

Complete genome sequence analysis, morphology and structural protein identification of two Bacillus subtilis phages, BSTP4 and BSTP6, which may form a new species in the genus Salasvirus

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

In the present study, two new Bacillus subtilis phages, BSTP4 and BSTP6, were isolated and studied further. Morphologically, BSTP4 and BSTP6 are podoviruses with complete genome of 19,145 (39.9% G + C content) and 19,367 bp (39.8% G + C content), respectively, which became among the smallest Bacillus phages. Three most prominent structural proteins were separated and identified as pre-neck appendage, major head, and head fiber proteins using LC–MS/MS. Both phages encode putative terminal proteins (TP) and contain short inverted terminal repeats (ITRs) which may be important for their replication. In addition, non-coding RNA (pRNA) and parS sites were identified which may be required for DNA packaging and their maintenance inside the host, respectively. Furthermore, the phage genome sequences show significant similarity to B. subtilis group species genome sequences. Finally, phylogenomic and phylogenetic analyses suggest that BSTP4 and BSTP6 may form a new species in the genus Salasvirus, subfamily Picovirinae of family Salasmaviridae. Considering the small numbers of ICTV-accepted B. subtilis phages and the importance of the host in the food industry and biotechnology, the current study helps to improve our understanding of the diversity of B. subtilis phages and shed light on the phage–host relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The genomes of the phages are deposited in NCBI with GenBank accession number MW354668.1 for BSTP4 and MW354670.1 for BSTP6.

References

  1. Tan YX, Mok WK, Lee J, Kim J, Chen WN (2019) Solid state fermentation of brewers’ spent grains for improved nutritional profile using Bacillus subtilis WX-17. Ferment 5(3):52

    Article  CAS  Google Scholar 

  2. Chen JY, Yu YH (2021) Bacillus subtilis–fermented products ameliorate the growth performance and alter cecal microbiota community in broilers under lipopolysaccharide challenge. Poult Sci 100(2):875–886

    Article  CAS  PubMed  Google Scholar 

  3. Catalão MJ, Gil F, Moniz-Pereira J, São-José C, Pimentel M (2013) Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 37(4):554–571

    Article  PubMed  Google Scholar 

  4. Chevallereau A, Pons BJ, van Houte S, Westra ER (2022) Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 20(1):49–62

    Article  CAS  PubMed  Google Scholar 

  5. Obeng N, Pratama AA, van Elsas JD (2016) The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol 24(6):440–449

    Article  CAS  PubMed  Google Scholar 

  6. O’Sullivan L, Bolton D, McAuliffe O, Coffey A (2022) The use of bacteriophages to control and detect pathogens in the dairy industry. Int J Dairy Technol. https://doi.org/10.1111/1471-0307.12641

    Article  Google Scholar 

  7. Nagai T, Research FYF science and technology, 2009 U. Bacillus subtilis (natto) bacteriophages isolated in Japan. jstage.jst.go.jp [Internet]. 2009 [cited 2022 Oct 5]; Available from: https://www.jstage.jst.go.jp/article/fstr/15/3/15_3_293/_article/-char/ja/

  8. Kubo Y, Sriyam S, Nakagawa R, Kimura KA (2018) Survey of phage contamination in natto-producing factories and development of phage-resistant Bacillus subtilis (natto) strains. Food Sci Technol Res 24(3):485–92

    Article  Google Scholar 

  9. Bandara N, Jo J, Ryu S, Kim KP (2012) Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods. Food Microbiol 31(1):9–16

    Article  CAS  PubMed  Google Scholar 

  10. Shin H, Bandara N, Shin E, Ryu S, Kim K, pyo (2011) Prevalence of Bacillus cereus bacteriophages in fermented foods and characterization of phage JBP901. Res Microbiol. 162(8):791–7

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh K, Senevirathne A, Kang H, Hyun W, Viruses JK (2018) Complete nucleotide sequence analysis of a novel Bacillus subtilis-infecting bacteriophage BSP10 and its effect on poly-gamma-glutamic acid degradation. mdpi.com. 10(5):240

    Google Scholar 

  12. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delcher A, Harmon D, Kasif S, … OWN acids, 1999 U. Improved microbial gene identification with GLIMMER. academic.oup.com [Internet]. 1999 [cited 2022 Oct 5]; Available from: https://academic.oup.com/nar/article-abstract/27/23/4636/1064678

  14. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 8:11

    Google Scholar 

  15. Mcnair K, Zhou C, Dinsdale EA, Souza B, Edwards RA (2019) PHANOTATE: a novel approach to gene identification in phage genomes. Bioinformatics 35(22):4537–4542

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 8:9

    Google Scholar 

  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  18. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol. 7(10):1002195

    Article  Google Scholar 

  19. Ecale Zhou CL, Malfatti S, Kimbrel J, Philipson C, McNair K, Hamilton T et al (2019) MultiPhATE: bioinformatics pipeline for functional annotation of phage isolates. Bioinformatics 35(21):4402–4404

    Article  PubMed  PubMed Central  Google Scholar 

  20. Laslett D, Canback BARAGORN (2004) a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32(1):11–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perkins D, Pappin D, … DCE, 1999 U. Probability‐based protein identification by searching sequence databases using mass spectrometry data. Wiley Online Libr [Internet]. 1999 [cited 2022 Oct 5]; Available from: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18%3C3551::AID-ELPS3551%3E3.0.CO;2-2

  22. Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res [Internet]. 2018 Jan 1 [cited 2022 Oct 5];46(D1):D708–17. Available from: https://pubmed.ncbi.nlm.nih.gov/29040670/

  23. Ågren J, Sundström A, Håfström T, Segerman B (2012) Gegenees: Fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS One. 7(6):e39107

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F et al (2008) Phylogenyfr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thompson JD, Gibson TJ, Higgins DG (2003) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinforma. 1:2–3

    Google Scholar 

  27. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meijer WJJ, Horcajadas JA, Salas M (2001) φ29 Family of Phages. Microbiol Mol Biol Rev 65(2):261–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schilling T, Hoppert M, Daniel R, Hertel R (2018) Complete genome sequence of vB_BveP-Goe6 a virus infecting Bacillus velezensis FZB42. Genome Announc 6(8):e00008-18

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guo X, Zhang T, Jin M, Zeng R (2020) Characterization of Bacillus phage Gxv1, a novel lytic Salasvirus phage isolated from deep-sea seamount sediments. Mar Life Sci. https://doi.org/10.1007/s42995-020-00074-8

    Article  PubMed  Google Scholar 

  31. Pačes V, Viček Č, Urbánek P, Hostomský Z (1985) Nucleotide sequence of the major early region of Bacillus subtilis phage PZA, a close relative of φ29. Gene 38(1–3):45–56

    Article  PubMed  Google Scholar 

  32. Willms IM, Hertel R (2016) Phage vB_BsuP-Goe1: the smallest identified lytic phage of Bacillus subtilis. FEMS Microbiol Lett 363(19):fnw208

    Article  PubMed  Google Scholar 

  33. Bradley DE (1965) The isolation and morphology of some new bacteriophages specific for Bacillus and Acetobacter species. J Gen Microbiol 41(2):233–241

    Article  CAS  PubMed  Google Scholar 

  34. Taylor AL (2022) Bacteriophage-induced mutation in Escherichia Coli. Proc Natl Acad Sci USA 50(2):1043–51

    Google Scholar 

  35. Wang PW, Chu L, Guttman DS (2004) Complete sequence and evolutionary genomic analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112. J Bacteriol 186(2):400–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu H, Zhang Y, Jiang Y, Wu H, Sun W, Huang YP (2021) Characterization and genomic analysis of ɸSHP3, a new transposable bacteriophage infecting Stenotrophomonas Maltophilia. J Virol. 95(9):e00019-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meijer WJ, Castilla-Llorente V, Villar L, Murray H, Errington J, Salas M (2005) Molecular basis for the exploitation of sporeformation as survival mechanism by virulent phage ϕ29. EMBO J 24(20):3647–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Castilla-Llorente V, Meijer WJJ, Salas M (2009) Differential Spo0A-mediated effects on transcription and replication of the related Bacillus subtilis phages Nf and Φ29 explain their different behaviours in vivo. Nucleic Acids Res 37(15):4955–4964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Castilla-Llorente V, Salas M, Meijer WJJ (2022) kinC/D-mediated heterogeneous expression of spo0A during logarithmical growth in Bacillus subtilis is responsible for partial suppression of φ29 development. Wiley 68(6):1406–17. https://doi.org/10.1111/j.1365-2958.2008.06234.x

    Article  CAS  Google Scholar 

  40. Meijer WJJ, Castilla-Llorente V, Villar L, Murray H, Errington J, Salas M (2005) Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage φ29. EMBO J 24(20):3647–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Motlagh AM, Bhattacharjee AS, Coutinho FH, Dutilh BE, Casjens SR, Goel RK (2017) Insights of phage-host interaction in hypersaline ecosystem through metagenomics analyses. Front Microbiol. 3:8–352

    Google Scholar 

  42. Turner D, Kropinski AM, Adriaenssens EM. A Roadmap for Genome-Based Phage Taxonomy. Viruses [Internet]. 2021 Mar 1 [cited 2023 Jan 6];13(3). Available from: https://pubmed.ncbi.nlm.nih.gov/33803862/

  43. Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Dempsey DM et al (2020) Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Arch Virol 165(11):2737–2748

    Article  CAS  PubMed  Google Scholar 

  44. Yoshikawa H, Ito J (1981) Terminal proteins and short inverted terminal repeats of the small Bacillus bacteriophage genomes. Proc Natl Acad Sci USA 78(4):2596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bjornsti MA, Reilly BE, Anderson DL (1983) Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: oriented and quantized in vitro packaging of DNA protein gp3. J Virol 45(1):383–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adriaenssens EM, Rodney Brister J (2017) How to name and classify your phage: an informal guide. Viruses 9(4):70

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ripp S, Miller RV (1997) The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology 143(6):2065–2070

    Article  CAS  PubMed  Google Scholar 

  48. Siringan P, Connerton PL, Cummings NJ, Connerton IF (2014) Alternative bacteriophage life cycles: the carrier state of campylobacter jejuni. Open Biol. 4(3):130200

    Article  PubMed  PubMed Central  Google Scholar 

  49. Łoś M, Węgrzyn G. Chapter 9 – Pseudolysogeny [Internet]. Vol. 82, Advances in Virus Research. 2012. p. 339–49. Available from: http://www.sciencedirect.com.ezproxy.weizmann.ac.il/science/article/pii/B9780123946218000194

  50. Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49(2):277–300

    Article  CAS  PubMed  Google Scholar 

  51. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms impact and ecology of temperate phages. ISME J 11(7):1511

    Article  PubMed  PubMed Central  Google Scholar 

  52. Grau RR, De Oña P, Kunert M, Leñini C, Gallegos-Monterrosa R, Mhatre E et al (2015) A duo of potassium-responsive histidine kinases govern the multicellular destiny of Bacillus subtilis. MBio. 6(4):00581–15

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Jeonbuk National University (JBNU) for resource support as well as the National Research Foundation of Korea (NRF), Korea Government (MSIT), and Global Korea Scholarship Program [GKS] for financial support.

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) [grant number: 2021R1A2C2008022].

Author information

Authors and Affiliations

Authors

Contributions

KPK and HBA conceived and designed the experiments. KPK supervised the experiment and critically reviewed the manuscript for its enrichment. HBA did the experiment, analysis, and wrote the draft of the manuscript. Both authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kwang-Pyo Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Edited by Andrew Millard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraha, H.B., Kim, KP. Complete genome sequence analysis, morphology and structural protein identification of two Bacillus subtilis phages, BSTP4 and BSTP6, which may form a new species in the genus Salasvirus. Virus Genes 59, 624–634 (2023). https://doi.org/10.1007/s11262-023-01998-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-01998-w

Keywords

Navigation