Skip to main content

Advertisement

Log in

Immune response induced by recombinant pres2/S-protein and a pres2-S-protein fused with a core 18-27 antigen fragment of hepatitis B virus compared to conventional HBV vaccine

  • Original Research
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Although comprehensive vaccination is the cornerstone of public health programs to control hepatitis B virus (HBV) infections, 5% of people who receive the existing vaccine do not develop proper immunity against HBV. To overcome this challenge, researchers have tried using various protein fragments encoded by the virus genome to achieve better immunization rates. An important antigenic component of HBsAg called the preS2/S or M protein has also received much attention in this area. The gene sequences of preS2/S and Core18-27 peptide were extracted from the GenBank (NCBI). Final gene synthesis was conducted with pET28. Groups of BALB/c mice were immunized with 10 μg/ml of recombinant proteins and 1 μg/ml CPG7909 adjuvant. Serum levels of IF-γ, TNF-α, IL-2, IL-4, and IL-10 were measured by ELISA assay method on spleen cell cultures on day 45, and IgG1, IgG2a, and total IgG titers obtained from mice serum were quantified on days 14 and 45. Statistical analysis did not show any significant difference between the groups regarding IF-γ level. There were, however, significant differences in terms of IL-2 and IL-4 levels between the groups receiving preS2/S-C18-27 with and without adjuvant and the groups receiving both preS2/S and preS2/S-C18-27 (Plus Recomb—Plus Recomb: the group of mice that received both preS2/S and preS2/S-C18-27 simultaneously). The strongest total antibody production was induced by immunization with both recombinant proteins without CPG adjuvant. The groups that received both preS2/S and preS2/S-C18-27, whether with or without adjuvant, were significantly different from those that received the conventional vaccine considering most abundant interleukins. This difference suggested that higher levels of efficacy can be achieved by the use of multiple virus antigen fragments rather than using a single fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during this study are available from the corresponding authors upon reasonable request.

References

  1. Trépo C, Chan HLY, Lok A (2014) Hepatitis B virus infection. Lancet 384(9959):2053–2063

    Article  PubMed  Google Scholar 

  2. Azizi F, Hatami H, Janqurbani M (2004) Epidemilogy and control common disease in Iran. Khosravi Publication, Tehran, pp 714–741

    Google Scholar 

  3. Mohamadkhani A (2014) The biology and genetic variation of hepatitis B virus. Govaresh 18(4):203–215

    Google Scholar 

  4. Eng NF, Bhardwaj N, Mulligan R, Diaz-Mitoma F (2013) The potential of 1018 ISS adjuvant in hepatitis B vaccines: HEPLISAV™ review. Hum Vaccin Immunother 9(8):1661–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Francis MJ, Hastings GZ, Brown AL, Grace KG, Rowlands DJ, Brown F et al (1990) Immunological properties of hepatitis B core antigen fusion proteins. Proc Natl Acad Sci USA 87(7):2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Riu Garcia A (2007) Functional analysis of hepatitis B virus variants with mutations in the envelope proteins. Doctoral Dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky

  7. Seeger C, Mason WS (2015) Molecular biology of hepatitis B virus infection. Virology 479:672–686

    Article  PubMed  Google Scholar 

  8. Gerlich WH (2015) Prophylactic vaccination against hepatitis B: achievements, challenges and perspectives. Med Microbiol Immunol 204(1):39–55

    Article  CAS  PubMed  Google Scholar 

  9. Bréchot C (2004) Pathogenesis of hepatitis B virus—related hepatocellular carcinoma: old and new paradigms. Gastroenterology. 127(5, Supplement 1):S56–S61

    Article  PubMed  Google Scholar 

  10. Tajiri K, Shimizu Y (2015) Unsolved problems and future perspectives of hepatitis B virus vaccination. World J Gastroenterol 21(23):7074–7083

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hu C, Shu J, Jin X (2012) Therapeutic vaccine for hepatitis B virus. J Immunol Tech Infect Dis 1:2

    Article  Google Scholar 

  12. Jing M, Wang J, Zhu S, Ao F, Wang L, Han T et al (2016) Development of a more efficient hepatitis B virus vaccine by targeting hepatitis B virus preS to dendritic cells. Vaccine 34(4):516–522

    Article  CAS  PubMed  Google Scholar 

  13. Hepatitis B (2001) Virus MHBs antigen is selectively sensitive to glucosidase-mediated processing in the endoplasmic reticulum. DNA Cell Biol 20(10):647–656

    Article  Google Scholar 

  14. Greiner VJ, Ronzon F, Larquet E, Desbat B, Estèves C, Bonvin J et al (2012) The structure of HBsAg particles is not modified upon their adsorption on aluminum hydroxide gel. Vaccine 30(35):5240–5245

    Article  CAS  PubMed  Google Scholar 

  15. Julithe R, Abou-Jaoudé G, Sureau C (2014) Modification of the hepatitis B virus envelope protein glycosylation pattern interferes with the secretion of viral particles, infectivity, and susceptibility to neutralizing antibodies. J Virol 88(16):9049

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kay A, Zoulim F (2007) Hepatitis B virus genetic variability and evolution. Virus Res 127(2):164–176

    Article  CAS  PubMed  Google Scholar 

  17. Pollicino T, Cacciola I, Saffioti F, Raimondo G (2014) Hepatitis B virus PreS/S gene variants: pathobiology and clinical implications. J Hepatol 61(2):408–417

    Article  CAS  PubMed  Google Scholar 

  18. Bakhshinejad B, Sadeghizadeh M (2014) Bacteriophages and their applications in the diagnosis and treatment of hepatitis B virus infection. World J Gastroenterol 20(33):11671–11683

    Article  PubMed  PubMed Central  Google Scholar 

  19. Milich DR, Thornton GB, Neurath AR, Kent SB, Michel ML, Tiollais P et al (1985) Enhanced immunogenicity of the pre-S region of hepatitis B surface antigen. Science 228(4704):1195–1199

    Article  CAS  PubMed  Google Scholar 

  20. Nassal M (2008) Hepatitis B viruses: reverse transcription a different way. Virus Res 134(1–2):235–249

    Article  CAS  PubMed  Google Scholar 

  21. Qian B, Shen H, Xiong J, Chen L, Zhang L, Jia J et al (2006) Expression and purification of the synthetic preS1 gene of hepatitis B virus with preferred Escherichia coli codon preference. Protein Expr Purif 48(1):74–80

    Article  CAS  PubMed  Google Scholar 

  22. Chen X, Li M, Le X, Ma W, Zhou B (2004) Recombinant hepatitis B core antigen carrying preS1 epitopes induce immune response against chronic HBV infection. Vaccine 22(3):439–446

    Article  CAS  PubMed  Google Scholar 

  23. King TH, Kemmler CB, Guo Z, Mann D, Lu Y, Coeshott C et al (2014) A whole recombinant yeast-based therapeutic vaccine elicits HBV X, S and core specific T cells in mice and activates human T cells recognizing epitopes linked to viral clearance. PLoS ONE 9(7):e101904

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang S, Han Q, Zhang N, Chen J, Liu Z, Zhang G et al (2010) HBcAg18–27 epitope fused to HIV-Tat49–57 adjuvanted with CpG ODN induces immunotherapeutic effects in transgenic mice. Immunol Lett 127(2):143–149

    Article  CAS  PubMed  Google Scholar 

  25. Brinck-Jensen N-S, Vorup-Jensen T, Leutscher PDC, Erikstrup C, Petersen E (2015) Immunogenicity of twenty peptides representing epitopes of the hepatitis B core and surface antigens by IFN-γ response in chronic and resolved HBV. BMC Immunol 16(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  26. Locarnini S, Hatzakis A, Chen D-S, Lok A (2015) Strategies to control hepatitis B: public policy, epidemiology, vaccine and drugs. J Hepatol 62(1, Supplement):S76–S86

    Article  PubMed  Google Scholar 

  27. Shahrokhi N, Bouzari S, Jafari AAF (2006) PRIMING HEPATITIS B SURFACE (HBSAG)- AND CORE ANTIGEN (HBCAG)-SPECIFIC IMMUNE RESPONSES BY CHIMERIC, HBCAG WITH A HBSAG ‘A’ DETERMINANT. Iran Biomed J 10(2):61–68

    CAS  Google Scholar 

  28. Shen K, Shen L, Wang J, Jiang Z, Shen B (2015) Understanding amino acid mutations in hepatitis B virus proteins for rational design of vaccines and drugs. Adv Protein Chem Struct Biol 99:131–153

    Article  CAS  PubMed  Google Scholar 

  29. Stahl SJ, Murray K (1989) Immunogenicity of peptide fusions to hepatitis B virus core antigen. Proc Natl Acad Sci USA 86(16):6283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ni Y-H, Chang M-H, Wu J-F, Hsu H-Y, Chen H-L, Chen D-S (2012) Minimization of hepatitis B infection by a 25-year universal vaccination program. J Hepatol 57(4):730–735

    Article  PubMed  Google Scholar 

  31. Walayat S, Ahmed Z, Martin D, Puli S, Cashman M, Dhillon S (2015) Recent advances in vaccination of non-responders to standard dose hepatitis B virus vaccine. World J Hepatol 7(24):2503

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang D, Fu B, Shen X, Guo C, Liu Y, Zhang J et al (2021) Restoration of HBV-specific CD8+ T-cell responses by sequential low-dose IL-2 treatment in non-responder patients after IFN-α therapy. Signal Transduct Target Ther 6(1):376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nishikawa K, Kimura K, Kanda Y, Sugiyama M, Kakihana K, Doki N et al (2020) A prospective trial of vaccine to prevent hepatitis B virus reactivation after hematopoietic stem cell transplantation. Bone Marrow Transplant 55(7):1388–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McCluskie MJ, Davis HL (1998) Cutting edge: CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J Immunol 161(9):4463–4466

    Article  CAS  PubMed  Google Scholar 

  35. Backes S, Jäger C, Dembek CJ, Kosinska AD, Bauer T, Stephan A-S et al (2016) Protein-prime/modified vaccinia virus Ankara vector-boost vaccination overcomes tolerance in high-antigenemic HBV-transgenic mice. Vaccine 34(7):923–932

    Article  CAS  PubMed  Google Scholar 

  36. Inoue T, Tanaka Y (2020) Cross-protection of hepatitis B vaccination among different genotypes. Vaccines 8(3):456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kwami WS, Mohammed OEE (2018) Estimation of hepatitis B virus antibodies titer due to Vaccination among Medical field professionals in Sudan Cardiac Center. Shendi University, Shendi

    Google Scholar 

  38. Gholizadeh M, Khanahmad H, Memarnejadian A, Aghasadeghi MR, Roohvand F, Sadat SM et al (2015) Design and expression of fusion protein consists of HBsAg and polyepitope of HCV as an HCV potential vaccine. Adv Biomed Res 4:243

    PubMed  PubMed Central  Google Scholar 

  39. Sedighian H, Halabian R, Amani J, Heiat M, Taheri RA, Fooladi AAI (2018) Manufacturing of a novel double-function ssDNA aptamer for sensitive diagnosis and efficient neutralization of SEA. Anal Biochem 548:69–77

    Article  CAS  PubMed  Google Scholar 

  40. Sedighian H, Halabian R, Amani J, Heiat M, Amin M, Fooladi AAI (2018) Staggered Target SELEX, a novel approach to isolate non-cross-reactive aptamer for detection of SEA by apta-qPCR. J Biotechnol 286:45–55

    Article  CAS  PubMed  Google Scholar 

  41. Greiner VJ, Manin C, Larquet E, Ikhelef N, Gréco F, Naville S et al (2014) Characterization of the structural modifications accompanying the loss of HBsAg particle immunogenicity. Vaccine 32(9):1049–1054

    Article  CAS  PubMed  Google Scholar 

  42. Toita R, Kawano T, Kang J-H, Murata M (2015) Applications of human hepatitis B virus preS domain in bio- and nanotechnology. World J Gastroenterol 21(24):7400–7411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Ge J, Ren S, Zhou T, Sun Y, Sun H et al (2015) Hepatitis B surface antigen (HBsAg) and core antigen (HBcAg) combine CpG oligodeoxynucletides as a novel therapeutic vaccine for chronic hepatitis B infection. Vaccine 33(35):4247–4254

    Article  CAS  PubMed  Google Scholar 

  44. Lavanchy D (2005) Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J Clin Virol 34:S1–S3

    Article  PubMed  Google Scholar 

  45. Lobaina Y, Hardtke S, Wedemeyer H, Aguilar JC, Schlaphoff V (2015) In vitro stimulation with HBV therapeutic vaccine candidate Nasvac activate B and T cells from chronic hepatitis B patients and healthy donors. Mol Immunol 63(2):320–327

    Article  CAS  PubMed  Google Scholar 

  46. Gu Y, Lian Y, Zheng Q, Huang Z, Gu L, Bi Y et al (2020) Association among cytokine profiles of innate and adaptive immune responses and clinical-virological features in untreated patients with chronic hepatitis B. BMC Infect Dis 20(1):509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mahboobi M, Sedighian H, Hedayati CHM, Bambai B, Esmaeil Soofian S, Amani J (2017) Applying bioinformatic tools for modeling and modifying type II E. coli l-Asparginase to present a better therapeutic agent/drug for acute lymphoblastic leukemia. Int J Cancer Manag. https://doi.org/10.5812/ijcm.5785

    Article  Google Scholar 

  48. Azizi M, Musacchio A, Pardo O, Figueroa N, Muzio V (2000) Expression of hepatitis B virus core antigen in native and fusion forms in E. coli. Iran Biomed J 4(1):37–43

    CAS  Google Scholar 

  49. Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM (2011) CpG DNA as a vaccine adjuvant. Expert Rev Vaccines 10(4):499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jeong GU, Ahn B-Y, Jung J, Kim H, Kim T-H, Kim W et al (2020) A recombinant human immunoglobulin with coherent avidity to hepatitis B virus surface antigens of various viral genotypes and clinical mutants. PLoS ONE 15(8):e0236704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hedayati ChM, Amani J, Sedighian H, Amin M, Salimian J, Halabian R et al (2016) Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography. J Mol Recognit 29(9):436–445

    Article  Google Scholar 

  52. Yuan Q, Ge S, Xiong J, Yan Q, Li Z, Hao X et al (2010) A novel immunoassay for PreS1 and/or core-related antigens for detection of HBsAg variants. J Virol Methods 168(1):108–113

    Article  CAS  PubMed  Google Scholar 

  53. Khodadad N, Seyedian SS, Moattari A, Biparva Haghighi S, Pirmoradi R, Abbasi S et al (2020) In silico functional and structural characterization of hepatitis B virus PreS/S-gene in Iranian patients infected with chronic hepatitis B virus genotype D. Heliyon 6(7):e04332

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kutinová L, Němečková Š, Hamšíková E, PreSs M, Závadová H, Hirsch I et al (1990) A recombinant vaccinia virus expressing hepatitis B virus middle surface protein Restricted expression of HBV antigens in human diploid cells. Adv Virol 112(3):181–193

    Google Scholar 

  55. Schmitt S, Glebe D, Alving K, Tolle TK, Linder M, Geyer H et al (1999) Analysis of the Pre-S2 N- and O-linked glycans of the M Surface protein from human hepatitis B virus*. J Biol Chem 274(17):11945–11957

    Article  CAS  PubMed  Google Scholar 

  56. Gebbing M, Bergmann T, Schulz E, Ehrhardt A (2015) Gene therapeutic approaches to inhibit hepatitis B virus replication. World J Hepatol 7(2):150

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of Clinical Microbiology Center, Ilam University of Medical Sciences, Ilam, Iran and the Applied Microbiology Research Center of Baqiyatallah University, Tehran, Iran.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

EP, AI, and AK conceived the study and designed experiments. EP, HS, and JA performed experiments. EP, HS, and AI analyzed experiments. EP, EB, HS, AI, and AK wrote the manuscript with support from all authors. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Abbas Ali Imani Fooladi or Afra Khosravi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest associated with the present manuscript.

Ethical approval

The experimental protocol was reviewed, approved, and supervised by the institution of animal care and the scientific committee of Ilam University of Medical Sciences (permit number: IR.MEDILAM.REC.1395.105).

Consent for publication

Not applicable.

Consent to participate

During the experiment, the vaccinated mice were monitored every day. All surgeries were performed under sodium pentobarbital anesthesia and all efforts were made to minimize the suffering of animals. The mice were sacrificed by using cervical dislocation method.

Additional information

Edited by Joachim J. Bugert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parizad, E.G., Imani Fooladi, A.A., Sedighian, H. et al. Immune response induced by recombinant pres2/S-protein and a pres2-S-protein fused with a core 18-27 antigen fragment of hepatitis B virus compared to conventional HBV vaccine. Virus Genes 59, 499–514 (2023). https://doi.org/10.1007/s11262-023-01995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-01995-z

Keywords

Navigation