Skip to main content
Log in

Biological characteristics and genomic analysis of a novel Escherichia phage Kayfunavirus CY1

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

As the problem of bacterial resistance becomes serious day by day, bacteriophage as a potential antibiotic substitute attracts more and more researchers' interest. In this study, Escherichia phage Kayfunavirus CY1 was isolated from sewage samples of swine farms and identified by biological characteristics and genomic analysis. One-step growth curve showed that the latent period of phage CY1 was about 10 min, the outbreak period was about 40 min and the burst size was 35 PFU/cell. Analysis of the electron microscopy and whole-genome sequence showed that the phage should be classified as a member of the Autographiviridae family, Studiervirinae subfamily. Genomic analysis of phage CY1 (GenBank accession no. OM937123) revealed a genome size of 39,173 bp with an average GC content of 50.51% and 46 coding domain sequences (CDSs). Eight CDSs encoding proteins involved in the replication and regulation of phage DNA, 2 CDSs encoded lysis proteins, 14 CDSs encoded packing and morphogenesis proteins. Genomic and proteomic analysis identified no sequence that encoded for virulence factor, integration-related proteins or antibiotic resistance genes. In summary, morphological and genomics suggest that phage CY1 is more likely a novel Escherichia phage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and its Additional files.

References

  1. Lima AAM, Medeiros P, Havt A (2018) Enteroaggregative Escherichia coli subclinical and clinical infections. Curr Opin Infect Dis 31(5):433–439

    Article  PubMed  Google Scholar 

  2. Luong T, Salabarria AC, Roach DR (2020) Phage therapy in the resistance era: where do we stand and where are we going? Clin Ther 42(9):1659–1680

    Article  CAS  PubMed  Google Scholar 

  3. Yoon H et al (2013) Characterization and genomic analysis of two Staphylococcus aureus bacteriophages isolated from poultry/livestock farms. J Gen Virol 94(Pt 11):2569–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Paitan Y (2018) Current trends in antimicrobial resistance of Escherichia coli. Curr Top Microbiol Immunol 416:181–211

    CAS  PubMed  Google Scholar 

  5. Zhang YZ, Singh S (2015) Antibiotic stewardship programmes in intensive care units: why, how, and where are they leading us. World J Crit Care Med 4(1):13–28

    Article  PubMed  PubMed Central  Google Scholar 

  6. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage-derived proteins—application approaches. Curr Med Chem 22(14):1757–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nilsson AS (2014) Phage therapy—constraints and possibilities. Upsala J Med Sci 119(2):192–198

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129(8):2659–2675

    CAS  PubMed  Google Scholar 

  10. Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 133(5):1111–1126

    CAS  PubMed  Google Scholar 

  11. Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage its general superiority over antibiotics. J Gen Microbiol 128(2):307–18

    CAS  PubMed  Google Scholar 

  12. Smith HW, Huggins MB, Shaw KM (1987) Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J Gen Microbiol 133(5):1127–35

    CAS  PubMed  Google Scholar 

  13. Anand T et al (2020) Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J Glob Antimicrob Resist 21:34–41

    Article  PubMed  Google Scholar 

  14. Geng H et al (2020) Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiol (Praha) 65(2):339–351

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y et al (2018) Complete genome sequence of a novel T7-like bacteriophage from a Pasteurella multocida capsular type A isolate. Curr Microbiol 75(5):574–579

    Article  CAS  PubMed  Google Scholar 

  16. Xing S et al (2017) Complete genome sequence of a novel, virulent Ahjdlikevirus bacteriophage that infects Enterococcus faecium. Arch Virol 162(12):3843–3847

    Article  CAS  PubMed  Google Scholar 

  17. Lu S et al (2013) Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. PLoS ONE 8(5):e62933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jia B et al (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45(D1):D566–D573

    Article  CAS  PubMed  Google Scholar 

  19. Liu B et al (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47(D1):D687–D692

    Article  CAS  PubMed  Google Scholar 

  20. Gan HM et al (2013) The complete genome sequence of EC1-UPM, a novel N4-like bacteriophage that infects Escherichia coli O78K80. Virol J 10:308

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang R et al (2018) Characterization and genome analysis of novel phage vB_EfaP_IME195 infecting Enterococcus faecalis. Virus Genes 54(6):804–811

    Article  CAS  PubMed  Google Scholar 

  22. Grant JR, Stothard P (2008) The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar S et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11(1):58–68

    Article  CAS  PubMed  Google Scholar 

  26. Brenner S (1959) Physiological aspects of bacteriophage genetics. Adv Virus Res 6:137–158

    Article  CAS  PubMed  Google Scholar 

  27. Kokkari C et al (2018) Isolation and characterization of a novel bacteriophage infecting Vibrio alginolyticus. Arch Microbiol 200(5):707–718

    Article  CAS  PubMed  Google Scholar 

  28. Manohar P et al (2018) Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PLoS ONE 13(10):e0206278

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pekkle Lam HY et al (2022) Biological and genomic characterization of two newly isolated Elizabethkingia anophelis bacteriophages. J Microbiol Immunol Infect 55(4):634–642

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Q et al (2017) Characterization and complete genome sequence analysis of a novel virulent Siphoviridae phage against Staphylococcus aureus isolated from bovine mastitis in Xinjiang. China Virus Genes 53(3):464–476

    Article  CAS  PubMed  Google Scholar 

  31. Gwak KM et al (2018) Isolation and characterization of a lytic and highly specific phage against Yersinia enterocolitica as a novel biocontrol agent. J Microbiol Biotechnol 28(11):1946–1954

    Article  CAS  PubMed  Google Scholar 

  32. Zhou YQ et al (2022) A polyvalent broad-spectrum Escherichia phage tequatrovirus EP01 capable of controlling Salmonella and Escherichia coli contamination in foods. Viruses-Basel 14(2):286

    Article  CAS  Google Scholar 

  33. Lu L et al (2017) Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virol J 14(1):104

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yuan Y et al (2018) Isolation of a novel Bacillus thuringiensis phage representing a new phage lineage and characterization of its endolysin. Viruses 10(11):611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang C et al (2021) Identification and complete genome of lytic “Kp34likevirus” phage vB_KpnP_Bp5 and therapeutic potency in the treatment of lethal Klebsiella pneumoniae infections in mice. Virus Res 297:198348

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Guangxi Province (2021GXNSFAA196058), the Key Research and Development Program of Nanning (20212023), the Key R&D Program of Liangqing District (202109), the Major Science and Technology Project of Liangqing District (202118), the Key R&D Program of Fangchenggang City (AB21014016), the Key Research and Development of Wuming District (20210102), the Jiangnan Key Research and Development (20220620-2) and the Project of Bama County for Talents in Science and Technology (20210008, 20210015).

Author information

Authors and Affiliations

Authors

Contributions

YC: Methodology, Investigation, Validation, Formal analysis, Writing—original draft. DM: Formal analysis, Writing-review & editing. YZ: Investigation. LW: Investigation. KH: Investigation. LL: Investigation. XM: Investigation. ZL: Investigation. YW: Investigation. HL: Investigation. YT: Investigation. XL: Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Xun Li.

Ethics declarations

Conflict of interest

All of the authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All individual participants included in the study are consent to participate.

Consent for publication

All findings were agreed to be published.

Additional information

Edited by Andrew Millard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1115 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Ma, D., Zhou, Y. et al. Biological characteristics and genomic analysis of a novel Escherichia phage Kayfunavirus CY1. Virus Genes 59, 613–623 (2023). https://doi.org/10.1007/s11262-023-01993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-023-01993-1

Keywords

Navigation