Skip to main content

The Rep and C1 of Beet curly top Iran virus represent pathogenicity factors and induce hypersensitive response in Nicotiana benthamiana plants

Abstract

Beet curly top Iran virus (BCTIV) is a member of the genus Becurtovirus (Family Geminiviridae) with a circular single-strand DNA genome. BCTIV causes leaf curling and vein swelling symptoms in plants. However, the potential pathogenicity factor/s in BCTIV is/are not known. This study presents characterization of complementary-sense transcripts of BCTIV and the viral factors in directing the pathogenicity and hypersensitive response (HR) in Nicotiana benthamiana plants. In both local and systemic infection, splicing of the complementary transcripts of BCTIV was observed. Notably, a small number (8.3%) of transcripts were spliced to produce Rep (C1:C2) transcripts after deletion of 155 nt (position 1892–2046 from BCTIV). Expression of BCTIV genes in N. benthamiana using tobacco rattle virus (TRV)-based vector showed that Rep together with C1 are the main pathogenicity factors which cause typical viral leaf curling symptoms. In addition, the V2 caused a mild leaf curling, thickening, and asymmetric leaves, while the V1, V3, and C2 had no clear effect on the plant phenotype. Transient expression of individual viral genes showed that both the C1 and Rep trigger a HR response in N. benthamiana. The higher expression of HR marker genes, harpin-induced 1 (Hin1) and hypersensitivity‐related (Hsr203JI), supported the role of C1 and Rep in HR response in plants. It is concluded that Rep and C1 are the main pathogenicity factors that also trigger HR response in plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adams MJ, Lefkowitz EJ, King AM, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR (2017) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses. Arch Virol 162:2505–2538. https://doi.org/10.1007/s00705-017-3358-5

    CAS  Article  PubMed  Google Scholar 

  2. International Committee on Taxonomy of Viruses (ICTV). (2021) https://talk.ictvonline.org/taxonomy/

  3. Kardani SG, Heydarnejad J, Zakiaghl M, Mehrvar M, Kraberger S, Varsani A (2013) Diversity of beet curly top Iran virus isolated from different hosts in Iran. Virus Genes 46:571–575. https://doi.org/10.1007/s11262-013-0875-5

    CAS  Article  Google Scholar 

  4. Eini O, Sahraei GE, Behjatnia SAA (2016) Molecular characterization and construction of an infectious clone of a pepper isolate of Beet curly top Iran virus. Mol Biol Res Commun 5:101–113

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yazdi HB, Heydarnejad J, Massumi H (2008) Genome characterization and genetic diversity of beet curly top Iran virus: a geminivirus with a novel nonanucleotide. Virus Genes 36:539–545. https://doi.org/10.1007/s11262-008-0224-2

    CAS  Article  PubMed  Google Scholar 

  6. Boulton MI (2002) Functions and interactions of mastrevirus gene products. Physiol Mol Plant Pathol 60:243–255. https://doi.org/10.1006/pmpp.2002.0403

    CAS  Article  Google Scholar 

  7. Fondong VN (2013) Geminivirus protein structure and function. Mol Plant Pathol 14:635–649. https://doi.org/10.1111/mpp.12032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Bozorgi N, Heydarnejad J, Kamali M, Massumi H (2017) Splicing features in the expression of the complementary-sense genes of Beet curly top Iran virus. Virus Genes 53:323–327. https://doi.org/10.1007/s11262-016-1422-y

    CAS  Article  PubMed  Google Scholar 

  9. Rwahnih MA, Dave A, Anderson MM, Rowhani A, Uyemoto JK, Sudarshana MR (2013) Association of a DNA virus with grapevines affected by red blotch disease in California. Phytopathology 103:1069–1076. https://doi.org/10.1094/PHYTO-10-12-0253-R

    CAS  Article  PubMed  Google Scholar 

  10. Varsani A, Navas-Castillo N, Moriones E, Hernandez-Zepeda C, Idris A, Brown JK, Murilo Zerbini F, Martin FD (2014) Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol 159:2193–2203. https://doi.org/10.1007/s00705-014-2050-2

    CAS  Article  PubMed  Google Scholar 

  11. Vargas-Asencio J, Liou H, Perry KL, Thompson JR (2019) Evidence for the splicing of grablovirus transcripts reveals a putative novel open reading frame. J Gen Virol 100:709–720. https://doi.org/10.1099/jgv.0.001234

    CAS  Article  PubMed  Google Scholar 

  12. Qiu Y, Zhang S, Yu H, Xuan Z, Yang L, Zhan B, Murilo Zerbini F, Cao M (2020) Identification and characterization of two novel geminiviruses associated with paper mulberry (Broussonetia papyrifera) leaf curl disease. Plant Dis 104:3010–3018. https://doi.org/10.1094/pdis-12-19-2597-re

    CAS  Article  PubMed  Google Scholar 

  13. Bernardo P, Golden M, Akram M, Nadarajan N, Fernandez E, Granier M, Rebelo AG, Peterschmitt M, Martin DP, Roumagnac P (2013) Identification and characterisation of a highly divergent geminivirus: evolutionary and taxonomic implications. Virus Res 177:35–45. https://doi.org/10.1016/j.virusres.2013.07.006

    CAS  Article  PubMed  Google Scholar 

  14. Horváth GV, Pettkó-Szandtner A, Nikovics K, Bilgin M, Boulton M, Davies JW, Gutiérrez C, Dudits D (1998) Prediction of functional regions of the maize streak virus replication-associated proteins by protein-protein interaction analysis. Plant Mol Biol 38:699–712. https://doi.org/10.1023/A:1006076316887

    Article  PubMed  Google Scholar 

  15. Wang Y, Dang M, Hou H, Mei Y, Qian Y, Zhou X (2014) Identification of an RNA silencing suppressor encoded by a mastrevirus. J Gen Virol 95:2082–2088. https://doi.org/10.1099/vir.0.064246-0

    CAS  Article  PubMed  Google Scholar 

  16. Heydarnejad J, Keyvani N, Razavinejad S, Massumi H, Varsani A (2013) Fulfilling Koch’s postulates for Beet curly top Iran virus and proposal for consideration of new genus in the family Geminiviridae. Arch Virol 158:435–443. https://doi.org/10.1007/s00705-012-1485-6

    CAS  Article  PubMed  Google Scholar 

  17. Baliji S, Black MC, French R, Stenger DC, Sunter G (2004) Spinach curly top virus: a newly described Curtovirus species from southwest Texas with incongruent gene phylogenies. Phytopathology 94:772–779. https://doi.org/10.1094/PHYTO.2004.94.7.772

    CAS  Article  PubMed  Google Scholar 

  18. Luna AP, Romero-Rodríguez B, Rosas-Díaz T, Cerero L, Rodríguez-Negrete EA, Castillo AG, Bejarano ER (2020) Characterization of Curtovirus V2 protein, a functional homolog of begomovirus V2. Front Plant Sci 11:835–848. https://doi.org/10.3389/fpls.2020.00835

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rigden JE, Krake LR, Rezaian MA, Dry IB (1994) ORF C4 of tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204:847–850. https://doi.org/10.1006/viro.1994.1606

    CAS  Article  PubMed  Google Scholar 

  20. Stanley J, Latham JR, Pinner MS, Bedford I, Markham PG (1992) Mutational analysis of the monopartite geminivirus beet curly top virus. Virology 191:396–405. https://doi.org/10.1016/0042-6822(92)90201-Y

    CAS  Article  PubMed  Google Scholar 

  21. Zhan B, Zhao W, Li S, Yang X, Zhou X (2018) Functional scanning of apple geminivirus proteins as symptom determinants and suppressors of posttranscriptional gene silencing. Viruses 10:488–503. https://doi.org/10.3390/v10090488

    CAS  Article  PubMed Central  Google Scholar 

  22. Gorovits R, Moshe A, Amrani L, Kleinberger R, Anfoka G, Czosnek H (2017) The six tomato yellow leaf curl virus genes expressed individually in tomato induce different levels of plant stress response attenuation. Cell Stress Chaperones 22:345–355. https://doi.org/10.1007/s12192-017-0766-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. van Wezel R, Liu H, Tien P, Stanley J, Hong Y (2001) Gene C2 of the monopartite geminivirus tomato yellow leaf curl virus-China encodes a pathogenicity determinant that is localized in the nucleus. Mol Plant Microbe Interact 14:1125–1128. https://doi.org/10.1094/MPMI.2001.14.9.1125

    Article  PubMed  Google Scholar 

  24. Balint-Kurti P (2019) The plant hypersensitive response: concepts, control and consequences. Mol Plant Pathol 20:1163–1178. https://doi.org/10.1111/mpp.12821

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hara-Nishimura I, Hatsugai N (2011) The role of vacuole in plant cell death. Cell Death Differ 18:1298–1304. https://doi.org/10.1038/cdd.2011.70

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520. https://doi.org/10.1093/jxb/erm239

    CAS  Article  PubMed  Google Scholar 

  27. van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425

    CAS  Article  PubMed  Google Scholar 

  28. Heydarnejad J, HosseiniAbhari E, BolokYazdi HR, Massumi H (2007) Curly top of cultivated plants and weeds and report of a unique curtovirus from Iran. J Phytopathol 155:321–325. https://doi.org/10.1111/j.1439-0434.2007.01234.x

    CAS  Article  Google Scholar 

  29. Bolok Yazdi H, Heydarnejad J, Massumi H (2008) Genome characterization and genetic diversity of beet curly top Iran virus: a geminivirus with a novel nonanucleotide. Virus Genes 36:539–545. https://doi.org/10.1007/s11262-008-0224-2

    CAS  Article  Google Scholar 

  30. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245. https://doi.org/10.1046/j.0960-7412.2000.00942.x

    CAS  Article  PubMed  Google Scholar 

  31. Ghazala W, Varrelmann M (2007) Tobacco rattle virus 29K movement protein is the elicitor of extreme and hypersensitive-like resistance in two cultivars of Solanum tuberosum. Mol Plant Microbe Interact 20:1396–1405. https://doi.org/10.1094/MPMI-20-11-1396

    CAS  Article  PubMed  Google Scholar 

  32. Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832. https://doi.org/10.1023/A:1006496308160

    CAS  Article  PubMed  Google Scholar 

  33. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318

    CAS  Article  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(t)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  PubMed  Google Scholar 

  35. Harrison B, Robinson D (1986) Tobraviruses. In: Van Regenmortel MHV, Fraenkel-Conrat H (eds) The plant viruses. Springer, Boston, MA, pp 339–369

    Chapter  Google Scholar 

  36. Soleimani R, Matic S, Taheri H, Behjatnia SAA, Vecchiati M, Izadpanah K, Accotto GP (2013) The unconventional geminivirus beet curly top Iran virus: satisfying Koch’s postulates and determining vector and host range. Ann Appl Biol 162:174–181. https://doi.org/10.1111/aab.12009

    CAS  Article  Google Scholar 

  37. Wright E, Heckel T, Groenendijk J, Davies J, Boulton M (1997) Splicing features in maize streak virus virion-and complementary-sense gene expression. Plant J 12:1285–1297. https://doi.org/10.1046/j.1365-313x.1997.12061285.x

    CAS  Article  PubMed  Google Scholar 

  38. Nash TE, Dallas MB, Reyes MI, Buhrman GK, Ascencio-Ibañez JT, Hanley-Bowdoin L (2011) Functional analysis of a novel motif conserved across geminivirus Rep proteins. J Virol 85:1182–1192. https://doi.org/10.1128/JVI.02143-10

    CAS  Article  PubMed  Google Scholar 

  39. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (2000) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 35:105–140. https://doi.org/10.1080/07352689991309162

    CAS  Article  Google Scholar 

  40. Yang X, Ren Y, Sun S, Wang D, Zhang F, Li D, Li S, Zhou X (2018) Identification of the potential virulence factors and RNA silencing suppressors of mulberry mosaic dwarf-associated geminivirus. Viruses 10:472–487. https://doi.org/10.3390/v10090472

    CAS  Article  PubMed Central  Google Scholar 

  41. Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS et al (2000) A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J. 19:3485–3495. https://doi.org/10.1093/emboj/19.13.3485

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Selth LA, Randles JW, Rezaian MA (2004) Host responses to transient expression of individual genes encoded by Tomato leaf curl virus. Mol Plant Microbe Interact 17:27–33. https://doi.org/10.1094/MPMI.2004.17.1.27

    CAS  Article  PubMed  Google Scholar 

  43. Qian Y, Hou H, Shen Q, Cai X, Sunter G, Zhou X (2016) RepA protein encoded by Oat dwarf virus elicits a temperature-sensitive hypersensitive response–type cell death that involves jasmonic acid–dependent signaling. Mol Plant Microbe Interact 29:5–21. https://doi.org/10.1094/MPMI-07-15-0149-R

    CAS  Article  PubMed  Google Scholar 

  44. Diamos AG, Mason HS (2019) Modifying the replication of geminiviral vectors reduces cell death and enhances expression of biopharmaceutical proteins in Nicotiana benthamiana leaves. Front Plant Sci 9:1974–1986. https://doi.org/10.3389/fpls.2018.01974

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pontier D, Godiard L, Marco Y, Roby D (1994) hsr203J, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant J 5:507–521. https://doi.org/10.1046/j.1365-313X.1994.05040507.x

    CAS  Article  PubMed  Google Scholar 

  46. Liu Y, Zhou X, Liu W, Huang J, Liu Q, Sun J, Cai X, Miao W (2020) HpaXpm, a novel harpin of Xanthomonas phaseoli pv. manihotis, acts as an elicitor with high thermal stability, reduces disease, and promotes plant growth. BMC Microbiol 20:4–15. https://doi.org/10.1186/s12866-019-1691-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Takahashi Y, Berberich T, Yamashita K, Uehara Y, Miyazaki A, Kusano T (2004) Identification of tobacco HIN1 and two closely related genes as spermine-responsive genes and their differential expression during the Tobacco mosaic virus -induced hypersensitive response and during leaf- and flower-senescence. Plant Mol Biol 54:613–622. https://doi.org/10.1023/B:PLAN.0000038276.95539.39

    CAS  Article  PubMed  Google Scholar 

  48. Peng H, Pu Y, Yang X, Wu G, Qing L, Ma L, Sun X (2019) Overexpression of a pathogenesis-related gene NbHIN1 confers resistance to Tobacco Mosaic Virus in Nicotiana benthamiana by potentially activating the jasmonic acid signaling pathway. Plant Sci 283:147–156. https://doi.org/10.1016/j.plantsci.2019.02.018

    CAS  Article  PubMed  Google Scholar 

  49. Boulton MI, Steinkellner H, Donson J, Markham PG, King DI, Davies JW (1989) Mutational analysis of the virion-sense genes of maize streak virus. J Gen Virol 70:2309–2323. https://doi.org/10.1099/0022-1317-70-9-2309

    CAS  Article  PubMed  Google Scholar 

  50. Mubin M, Amin I, Amrao L, Briddon RW, Mansoor S (2010) The hypersensitive response induced by the V2 protein of a monopartite begomovirus is countered by the C2 protein. Mol Plant Pathol 11:245–254. https://doi.org/10.1111/j.1364-3703.2009.00601.x

    CAS  Article  PubMed  Google Scholar 

  51. Sharma P, Ikegami M (2010) Tomato leaf curl Java virus V2 protein is a determinant of virulence, hypersensitive response and suppression of posttranscriptional gene silencing. Virology 396:85–93. https://doi.org/10.1016/j.virol.2009.10.012

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Noerthemann for technical supports.

Funding

This work was supported the University of Zanjan and the Ministry of Science, Research and Technology-Iran. SE was granted a scholarship from ZNU (number ZNU96139105) to conduct this research as part of her PhD program.

Author information

Authors and Affiliations

Authors

Contributions

SE contributed to experiment setting, data analysis, writing of the original draft; OEcontributed to design of the experiments and supervision and writing; DK contributed to experiment support and writing; MV contributed to design of the experiments and provided comments on the data and manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Omid Eini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Edited by Seung-Kook Choi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 5344 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S., Eini, O., Koolivand, D. et al. The Rep and C1 of Beet curly top Iran virus represent pathogenicity factors and induce hypersensitive response in Nicotiana benthamiana plants. Virus Genes (2022). https://doi.org/10.1007/s11262-022-01927-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11262-022-01927-3

Keywords

  • BCTIV
  • Becurtovirus
  • Cell death
  • Geminivirus
  • Splicing