Skip to main content

An increase in prevalence of recombinant GII.3[P12] norovirus in sporadic acute diarrhea in children in Nizhny Novgorod, Russia, 2018–2021

Abstract

Noroviruses are important etiological agents causing acute intestinal infection in humans. In the last decades, the most common norovirus genotype was GII.4 despite a significant genetic diversity among strains, while the active circulation of noroviruses with other genotypes was observed periodically. This study shows an increase in the detection rate of recombinant GII.3[P12] norovirus in Nizhny Novgorod, Russia, from 6.8% in 2018–2019 to 34.9% in 2020–2021. We performed a phylogenetic analysis based on the nucleotide sequences of noroviruses possessing this genotype obtained in this work, as well as presented in the GenBank database. It has been shown that the circulation of GII.3[P12] noroviruses in the study area was the result of several independent introductions, either directly from the Western Pacific region, or through the Asian part of Russia. The polyphyletic origin, the geographical expansion, and the growth of the epidemic significance of the recombinant GII.3[P12] noroviruses were noted.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Siebenga JJ, Vennema H, Renckens B, de Bruin E, van der Veer B, Siezen RJ, Koopmans M (2007) Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. J Virol 81(18):9932–9941. https://doi.org/10.1128/JVI.00674-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Hoa Tran TN, Trainor E, Nakagomi T, Cunliffe NA, Nakagomi O (2013) Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants. J Clin Virol 56(3):185–193. https://doi.org/10.1016/j.jcv.2012.11.011

    CAS  Article  PubMed  Google Scholar 

  3. Parra GI, Squires RB, Karangwa CK, Johnson JA, Lepore CJ, Sosnovtsev SV, Green KY (2017) Static and evolving norovirus genotypes: implications for epidemiology and immunity. PLoS Pathog 13(1):e1006136. https://doi.org/10.1371/journal.ppat.1006136

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Vega E, Vinjé J (2011) Novel GII.12 norovirus strain, United States, 2009–2010. Emerg Infect Dis 17(8):1516–1518. https://doi.org/10.3201/eid1708.110025

    Article  PubMed  PubMed Central  Google Scholar 

  5. Parra GI, Green KY (2015) Genome of emerging norovirus GII.17, United States, 2014. Emerg Infect Dis 21(8):1477–1479. https://doi.org/10.3201/eid2108.150652

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Matsushima Y, Ishikawa M, Shimizu T, Komane A, Kasuo S, Shinohara M, Nagasawa K, Kimura H, Ryo A, Okabe N, Haga K, Doan YH, Katayama K, Shimizu H et al (2015) Genetic analyses of GII.17 norovirus strains in diarrheal disease outbreaks from December 2014 to March 2015 in Japan reveal a novel polymerase sequence and amino acid substitutions in the capsid region. Eurosurveillance. https://doi.org/10.2807/1560-7917.ES2015.20.26.21173

    Article  PubMed  Google Scholar 

  7. Chan MC, Lee N, Hung TN, Kwok K, Cheung K, Tin EK, Lai RW, Nelson EA, Leung TF, Chan PK (2015) Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014. Nat Commun 6:10061. https://doi.org/10.1038/ncomms10061

    CAS  Article  PubMed  Google Scholar 

  8. Niendorf S, Jacobsen S, Faber M, Eis-Hübinger AM, Hofmann J, Zimmermann O, Höhne M, Bock CT (2017) Steep rise in norovirus cases and emergence of a new recombinant strain GII.P16-GII.2, Germany, winter 2016. Eurosurveillance 22(4):30447. https://doi.org/10.2807/1560-7917.ES.2017.22.4.30447

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bidalot M, Théry L, Kaplon J, De Rougemont A, Ambert-Balay K (2017) Emergence of new recombinant noroviruses GII.p16-GII.4 and GII.p16-GII.2, France, winter 2016 to 2017. Eurosurveillance 22(15):30508. https://doi.org/10.2807/1560-7917.ES.2017.22.15.30508

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mahar JE, Bok K, Green KY, Kirkwood CD (2013) The importance of intergenic recombination in norovirus GII.3 evolution. J Virol 87(7):3687–3698. https://doi.org/10.1128/JVI.03056-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Tohma K, Lepore CJ, Martinez M, Degiuseppe JI, Khamrin P, Saito M, Mayta H, Nwaba AUA, Ford-Siltz LA, Green KY, Galeano ME, Zimic M, Stupka JA, Gilman RH, Maneekarn N, Ushijima H, Parra GI (2021) Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints. PLoS Pathog 17(7):e1009744. https://doi.org/10.1371/journal.ppat.1009744

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Parra GI (2019) Emergence of norovirus strains: a tale of two genes. Virus Evol 5(2):vez048. https://doi.org/10.1093/ve/vez048

    Article  PubMed  PubMed Central  Google Scholar 

  13. Anderson AD, Garrett VD, Sobel J, Monroe SS, Fankhauser RL, Schwab KJ, Bresee JS, Mead PS, Higgins C, Campana J, Glass RI, Outbreak Investigation Team (2001) Multistate outbreak of Norwalk-like virus gastroenteritis associated with a common caterer. Am J Epidemiol 154(11):1013–1019. https://doi.org/10.1093/aje/154.11.1013

    CAS  Article  PubMed  Google Scholar 

  14. Kojima S, Kageyama T, Fukushi S, Hoshino FB, Shinohara M, Uchida K, Natori K, Takeda N, Katayama K (2002) Genogroup-specific PCR primers for detection of Norwalk-like viruses. J Virol Methods 100(1–2):107–114. https://doi.org/10.1016/s0166-0934(01)00404-9

    CAS  Article  PubMed  Google Scholar 

  15. Cannon JL, Barclay L, Collins NR, Wikswo ME, Castro CJ, Magaña LC, Gregoricus N, Marine RL, Chhabra P, Vinjé J (2017) Genetic and epidemiologic trends of norovirus outbreaks in the United States from 2013 to 2016 demonstrated emergence of novel GII.4 recombinant viruses. J Clin Microbiol 55(7):2208–2221. https://doi.org/10.1128/JCM.00455-17 (Erratum in: J Clin Microbiol. 2019 Jun 25;57(7))

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kroneman A, Vennema H, Deforche K, Avoort H, Peñaranda S, Oberste MS, Vinjé J, Koopmans M (2011) An automated genotyping tool for enteroviruses and noroviruses. J Clin Virol 51(2):121–125. https://doi.org/10.1016/j.jcv.2011.03.006

    CAS  Article  PubMed  Google Scholar 

  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    CAS  Article  PubMed  Google Scholar 

  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973. https://doi.org/10.1093/molbev/mss075

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Kageyama T, Shinohara M, Uchida K, Fukushi S, Hoshino FB, Kojima S, Takai R, Oka T, Takeda N, Katayama K (2004) Coexistence of multiple genotypes, including newly identified genotypes, in outbreaks of gastroenteritis due to norovirus in Japan. J Clin Microbiol 42(7):2988–2995. https://doi.org/10.1128/JCM.42.7.2988-2995.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Yun SI, Kim JK, Song BH, Jeong AY, Jee YM, Lee CH, Paik SY, Koo Y, Jeon I, Byun SJ, Lee YM (2010) Complete genome sequence and phylogenetic analysis of a recombinant Korean norovirus, CBNU1, recovered from a 2006 outbreak. Virus Res 152(1–2):137–152. https://doi.org/10.1016/j.virusres.2010.06.018

    CAS  Article  PubMed  Google Scholar 

  22. Epifanova NV, Lukovnikova LB, Novikova NA, Parfenova OV, Fomina CG (2014) Epidemic variants of norovirus genotype GII.4 in Nizhny Novgorod in 2006–2012. Zh Mikrobiol Epidemiol Immunobiol 2:64–72

    Google Scholar 

  23. Zhirakovskaia EV, Tikunov AY, Bodnev SA, Klemesheva VV, Netesov SV, Tikunova NV (2015) Molecular epidemiology of noroviruses associated with sporadic gastroenteritis in children in Novosibirsk, Russia, 2003–2012. J Med Virol 87(5):740–753. https://doi.org/10.1002/jmv.24068

    CAS  Article  PubMed  Google Scholar 

  24. Zhirakovskaia E, Tikunov A, Tymentsev A, Sokolov S, Sedelnikova D, Tikunova N (2019) Changing pattern of prevalence and genetic diversity of rotavirus, norovirus, astrovirus, and bocavirus associated with childhood diarrhea in Asian Russia, 2009–2012. Infect Genet Evol 67:167–182. https://doi.org/10.1016/j.meegid.2018.11.006

    Article  PubMed  Google Scholar 

  25. Kapustin DV, Krasnova EI, Zhirakovskaia EV, Khokhlova NI, Sokolov SN, Tikunova NV, Kuimova IV, Evstropov AN, Kuznetsova VG, Panasenko LM, Izvekova IY, Lukashova LV (2020) Clinico-epidemiological features and molecular-genetic characteristics of acute intestinal infections of viral etiology in Novosibirsk. Exp Clin Gastroenterol 182(10):11–17. https://doi.org/10.31146/1682-8658-ecg-182-10-11-17

    Article  Google Scholar 

  26. Trang NV, le Luan T, le Kim-Anh T, Hau VT, le Nhung TH, Phasuk P, Setrabutr O, Shirley H, Vinjé J, Anh DD, Mason CJ (2012) Detection and molecular characterization of noroviruses and sapoviruses in children admitted to hospital with acute gastroenteritis in Vietnam. J Med Virol 84(2):290–297. https://doi.org/10.1002/jmv.23185

    Article  PubMed  Google Scholar 

  27. Phumpholsup T, Chieochansin T, Vongpunsawad S, Vuthitanachot V, Payungporn S, Poovorawan Y (2015) Human norovirus genogroup II recombinants in Thailand, 2009–2014. Arch Virol 160(10):2603–2609. https://doi.org/10.1007/s00705-015-2545-5

    CAS  Article  PubMed  Google Scholar 

  28. Utsumi T, Lusida MI, Dinana Z, Wahyuni RM, Soegijanto S, Athiyyah AF, Sudarmo SM, Ranuh RG, Darma A, Juniastuti, Yamani LN, Doan YH, Shimizu H, Ishii K, Matsui C, Deng L, Abe T, Katayama K, Shoji I (2021) Molecular epidemiology and genetic diversity of norovirus infection in children hospitalized with acute gastroenteritis in East Java, Indonesia in 2015–2019. Infect Genet Evol 88:104703. https://doi.org/10.1016/j.meegid.2020.104703

    CAS  Article  PubMed  Google Scholar 

  29. Mahar JE, Kirkwood CD (2011) Characterization of norovirus strains in Australian children from 2006 to 2008: prevalence of recombinant strains. J Med Virol 83(12):2213–2219. https://doi.org/10.1002/jmv.22215

    Article  PubMed  Google Scholar 

  30. Lun JH, Hewitt J, Sitabkhan A, Eden JS, Enosi Tuipulotu D, Netzler NE, Morrell L, Merif J, Jones R, Huang B, Warrilow D, Ressler KA, Ferson MJ, Dwyer DE, Kok J, Rawlinson WD, Deere D, Crosbie ND, White PA (2018) Emerging recombinant noroviruses identified by clinical and waste water screening. Emerg Microbes Infect 7(1):50. https://doi.org/10.1038/s41426-018-0047-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Phan TG, Kuroiwa T, Kaneshi K, Ueda Y, Nakaya S, Nishimura S, Yamamoto A, Sugita K, Nishimura T, Yagyu F, Okitsu S, Müller WE, Maneekarn N, Ushijima H (2006) Changing distribution of norovirus genotypes and genetic analysis of recombinant GIIb among infants and children with diarrhea in Japan. J Med Virol 78(7):971–978. https://doi.org/10.1002/jmv.20649

    CAS  Article  PubMed  Google Scholar 

  32. Chung JY, Han TH, Park SH, Kim SW, Hwang ES (2010) Detection of GII-4/2006b variant and recombinant noroviruses in children with acute gastroenteritis, South Korea. J Med Virol 82(1):146–152. https://doi.org/10.1002/jmv.21650

    CAS  Article  PubMed  Google Scholar 

  33. Han TH, Kim CH, Chung JY, Park SH, Hwang ES (2011) Emergence of norovirus GII-4/2008 variant and recombinant strains in Seoul, Korea. Arch Virol 156(2):323–329. https://doi.org/10.1007/s00705-010-0844-4

    CAS  Article  PubMed  Google Scholar 

  34. Jin M, Xie HP, Duan ZJ, Liu N, Zhang Q, Wu BS, Li HY, Cheng WX, Yang SH, Yu JM, Xu ZQ, Cui SX, Zhu L, Tan M, Jiang X, Fang ZY (2008) Emergence of the GII4/2006b variant and recombinant noroviruses in China. J Med Virol 80(11):1997–2004. https://doi.org/10.1002/jmv.21308

    CAS  Article  PubMed  Google Scholar 

  35. Wang YH, Zhou DJ, Zhou X, Yang T, Ghosh S, Pang BB, Peng JS, Liu MQ, Hu Q, Kobayashi N (2012) Molecular epidemiology of noroviruses in children and adults with acute gastroenteritis in Wuhan, China, 2007–2010. Arch Virol 157(12):2417–2424. https://doi.org/10.1007/s00705-012-1437-1

    CAS  Article  PubMed  Google Scholar 

  36. Lu QB, Huang DD, Zhao J, Wang HY, Zhang XA, Xu HM, Qu F, Liu W, Cao WC (2015) An increasing prevalence of recombinant GII norovirus in pediatric patients with diarrhea during 2010–2013 in China. Infect Genet Evol 31:48–52. https://doi.org/10.1016/j.meegid.2015.01.008

    CAS  Article  PubMed  Google Scholar 

  37. Liu J, Li S, Wang C, Zheng L, Ma J, Li C, Huo Y, Wang Y (2018) Genomic characterization of GII.3 noroviruses isolated from children in Zhengzhou city, China, 2015/16. Arch Virol 163(10):2737–2742. https://doi.org/10.1007/s00705-018-3905-8

    CAS  Article  PubMed  Google Scholar 

  38. Lu L, Zhong H, Xu M, Su L, Cao L, Jia R, Xu J (2019) Genetic diversity and epidemiology of Genogroup II noroviruses in children with acute sporadic gastroenteritis in Shanghai, China, 2012–2017. BMC Infect Dis 19(1):736. https://doi.org/10.1186/s12879-019-4360-1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kuang X, Teng Z, Zhang X (2019) Genotypic prevalence of norovirus GII in gastroenteritis outpatients in Shanghai from 2016 to 2018. Gut Pathog 11:40. https://doi.org/10.1186/s12879-019-4360-1

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hasing ME, Lee BE, Qiu Y, Xia M, Pabbaraju K, Wong A, Tipples G, Jiang X, Pang XL (2019) Changes in norovirus genotype diversity in gastroenteritis outbreaks in Alberta, Canada: 2012–2018. BMC Infect Dis 19(1):177. https://doi.org/10.1186/s12879-019-3792-y

    Article  PubMed  PubMed Central  Google Scholar 

  41. Casto AM, Adler AL, Makhsous N et al (2019) Prospective, real-time metagenomic sequencing during norovirus outbreak reveals discrete transmission clusters. Clin Infect Dis 69(6):941–948. https://doi.org/10.1093/cid/ciy1020

    CAS  Article  PubMed  Google Scholar 

  42. https://www.cdc.gov/norovirus/reporting/calicinet/data.html. Accessed 8 Oct 2021

  43. Kendra JA, Tohma K, Parra GI (2022) Global and regional circulation trends of norovirus genotypes and recombinants, 1995–2019: a comprehensive review of sequences from public databases. Rev Med Virol. https://doi.org/10.1002/rmv.2354

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing.

Author information

Authors and Affiliations

Authors

Contributions

NVE conceived and designed the experiments. OVM, TAS, and SVO performed the experiments. NVE and SVO analyzed the data. NVE and NAN wrote the manuscript. TAS and OVM participated in revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to O. V. Morozova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethical Committee of the I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing.

Additional information

Edited by Hartmut Hengel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 905 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Epifanova, N.V., Sashina, T.A., Morozova, O.V. et al. An increase in prevalence of recombinant GII.3[P12] norovirus in sporadic acute diarrhea in children in Nizhny Novgorod, Russia, 2018–2021. Virus Genes (2022). https://doi.org/10.1007/s11262-022-01919-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11262-022-01919-3

Keywords

  • Recombinant norovirus GII.3[P12]
  • An increase in prevalence
  • Phylogenetic analysis