Ron EZ (2006) Host specificity of septicemic Escherichia coli: human and avian pathogens Eliora Z Ron. Curr Opin Microbiol 9:28–32. https://doi.org/10.1016/j.mib.2005.12.001
CAS
Article
PubMed
Google Scholar
Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8(1):26–38. https://doi.org/10.1038/nrmicro2265
CAS
Article
PubMed
Google Scholar
Wells JG, Davis BR, Wachsmuth IK et al (1983) Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 18(3):512–520. https://doi.org/10.1128/JCM.18.3.512-520.1983
CAS
Article
PubMed
PubMed Central
Google Scholar
Brooks JT, Sowers EG, Wells JG et al (2005) Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J Infect Dis 192(8):1422–1429. https://doi.org/10.1086/466536
Article
PubMed
Google Scholar
Moxley RA (2004) Escherichia coli O157:H7: an update on intestinal colonization and virulence mechanisms. Anim Health Res Rev 5(1):15–33. https://doi.org/10.1079/AHRR200463
CAS
Article
PubMed
Google Scholar
Caprioli A, Morabito S, Brug Re H et al (2005) Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet Res 36(3):289–311. https://doi.org/10.1051/vetres:2005002
CAS
Article
PubMed
Google Scholar
Atnafie B, Paulos D, Abera M et al (2017) Occurrence of Escherichia coli O157:H7 in cattle feces and contamination of carcass and various contact surfaces in abattoir and butcher shops of Hawassa Ethiopia. BMC Microbiol 17(1):24. https://doi.org/10.1186/s12866-017-0938-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Cox GJM, Griffith B, Reed M et al (2020) A vaccine to prevent egg layer peritonitis in chickens. Avian Dis 65(1):198–204. https://doi.org/10.1637/aviandiseases-D-20-00093
Article
Google Scholar
Lima Barbieri N, Nielsen DW, Wannemuehler Y et al (2017) mcr-1 identified in avian pathogenic Escherichia coli (APEC). PLoS ONE 12(3):e172997. https://doi.org/10.1371/journal.pone.0172997
CAS
Article
Google Scholar
Solà-Ginés M, Cameron-Veas K, Badiola I et al (2015) Diversity of multi-drug resistant Avian Pathogenic Escherichia coli (APEC) causing outbreaks of colibacillosis in broilers during 2012 in Spain. PLoS ONE 10(11):e143191. https://doi.org/10.1371/journal.pone.0143191
CAS
Article
Google Scholar
Smith KE, Wilker PR, Reiter PL et al (2012) Antibiotic treatment of Escherichia coli O157 infection and the risk of hemolytic uremic syndrome. Minnesota Pediatr Infect Dis J 31(1):37–41. https://doi.org/10.1097/INF.0b013e31823096a8
Article
PubMed
Google Scholar
Ramstad SN, Taxt AM, Naseer U et al (2021) Effects of antimicrobials on Shiga toxin production in high-virulent Shiga toxin-producing Escherichia coli. Microb Pathogenesis 152:104636. https://doi.org/10.1016/j.micpath.2020.104636
CAS
Article
Google Scholar
D’Herelle F (2007) On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D ’ Herelle, presented by Mr. Roux. Res Microbiol 158(7):553–554. https://doi.org/10.1016/j.resmic.2007.07.005
Article
PubMed
Google Scholar
Salmond GPC, Fineran PC (2015) A century of the phage: past, present and future. Nat Rev Microbiol 13(12):777–786. https://doi.org/10.1038/nrmicro3564
CAS
Article
PubMed
Google Scholar
Clokie MR, Millard AD, Letarov AV et al (2011) Phages in nature. Bacteriophage 1(1):31–45. https://doi.org/10.4161/bact.1.1.14942
Article
PubMed
PubMed Central
Google Scholar
Coffey B, Rivas L, Duffy G et al (2011) Assessment of Escherichia coli O157:H7-specific bacteriophages e11/2 and e4/1c in model broth and hide environments. Int J Food Microbiol 147(3):188–194. https://doi.org/10.1016/j.ijfoodmicro.2011.04.001
Article
PubMed
Google Scholar
Xu J, Chen M, He L et al (2016) Isolation and characterization of a T4-like phage with a relatively wide host range within Escherichia coli. J Basic Microbiol 56(4):405–421. https://doi.org/10.1002/jobm.201500440
CAS
Article
PubMed
Google Scholar
Oliveira A, Sereno R, Azeredo J (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet Microbiol 146(3–4):303–308. https://doi.org/10.1016/j.vetmic.2010.05.015
Article
PubMed
Google Scholar
Badawy S, Baka ZAM, Abou-Dobara MI et al (2022) Biological and molecular characterization of fEg-Eco19, a lytic bacteriophage active against an antibiotic-resistant clinical Escherichia coli isolate. Arch Virol. https://doi.org/10.1007/s00705-022-05426-6
Article
PubMed
PubMed Central
Google Scholar
Li M, Guo M, Chen L et al (2020) Isolation and characterization of novel lytic bacteriophages infecting epidemic carbapenem-resistant Klebsiella pneumoniae strains. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01554
Article
PubMed
PubMed Central
Google Scholar
Chen M, Zhang L, Abdelgader SA et al (2017) Alterations in gp37 expand the host range of a T4-like phage. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01576-17
Article
PubMed
PubMed Central
Google Scholar
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0
CAS
Article
PubMed
Google Scholar
Pajunen M, Kiljunen S, Skurnik M (2000) Bacteriophage φYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to Coliphages T3 and T7. J Bacteriol 182(18):5114–5120. https://doi.org/10.1128/JB.182.18.5114-5120.2000
CAS
Article
PubMed
PubMed Central
Google Scholar
Ji Y, Cheng M, Zhai S et al (2019) Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Vet Microbiol 229:72–80. https://doi.org/10.1016/j.vetmic.2018.12.021
CAS
Article
PubMed
Google Scholar
Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021
CAS
Article
PubMed
PubMed Central
Google Scholar
Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75
CAS
Article
PubMed
PubMed Central
Google Scholar
Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkn179
Article
PubMed
PubMed Central
Google Scholar
Liu B, Zheng D, Jin Q et al (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47(D1):D687–D692. https://doi.org/10.1093/nar/gky1080
CAS
Article
PubMed
Google Scholar
Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053
CAS
Article
PubMed
PubMed Central
Google Scholar
Ren J, Wen L, Gao X et al (2009) DOG 1.0: illustrator of protein domain structures. Cell Res 19(2):271–273. https://doi.org/10.1038/cr.2009.6
CAS
Article
PubMed
Google Scholar
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153
CAS
Article
PubMed
Google Scholar
Page AJ, Cummins CA, Hunt M et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693. https://doi.org/10.1093/bioinformatics/btv421
CAS
Article
PubMed
PubMed Central
Google Scholar
Xu S, Campisi E, Li J et al (2021) Decontamination of Escherichia coli O157:H7 on fresh Romaine lettuce using a novel bacteriophage lysin. Int J Food Microbiol 341:109068. https://doi.org/10.1016/j.ijfoodmicro.2021.109068
CAS
Article
PubMed
Google Scholar
Huang C, Shi J, Ma W et al (2018) Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res Int 111:631–641. https://doi.org/10.1016/j.foodres.2018.05.071
CAS
Article
PubMed
Google Scholar
Vengarai Jagannathan B, Kitchens S, Priyesh Vijayakumar P et al (2021) Efficacy of bacteriophage cocktail to control E. coli O157:H7 contamination on baby spinach leaves in the presence or absence of organic load. Microorganisms 9(3):544. https://doi.org/10.3390/microorganisms9030544
CAS
Article
PubMed
PubMed Central
Google Scholar
Niu YD, Stanford K, Kropinski AM, Ackermann HW, Johnson RP, She YM, Ahmed R, Villegas A, McAllister TA (2012) Genomic, Proteomic and Physiological Characterization of a T5-like Bacteriophage for Control of Shiga Toxin- Producing Escherichia coli O157:H7. PLoS ONE 4(7):e34585
Article
Google Scholar
Pereira C, Silva YJ, Santos AL et al (2011) Bacteriophages with potential for inactivation of fish pathogenic bacteria: survival, host specificity and effect on bacterial community structure. Mar Drugs 9(11):2236–2255. https://doi.org/10.3390/md9112236
Article
PubMed
PubMed Central
Google Scholar
Salem M, Skurnik M (2018) Genomic characterization of sixteen yersinia enterocolitica-infecting podoviruses of pig origin. Viruses 10(4):174. https://doi.org/10.3390/v10040174
CAS
Article
PubMed Central
Google Scholar
Leungtongkam U, Thummeepak R, Kitti T et al (2020) Genomic analysis reveals high virulence and antibiotic resistance amongst phage susceptible Acinetobacter baumannii. Sci Rep. https://doi.org/10.1038/s41598-020-73123-y
Article
PubMed
PubMed Central
Google Scholar
Jayaprakash AD, Jabado O, Brown BD et al (2011) Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 39(21):e141. https://doi.org/10.1093/nar/gkr693
CAS
Article
PubMed
PubMed Central
Google Scholar
Hamdi S, Rousseau GM, Labrie SJ et al (2017) Characterization of two polyvalent phages infecting Enterobacteriaceae. Sci Rep. https://doi.org/10.1038/srep40349
Article
PubMed
PubMed Central
Google Scholar
Hong Nhung P, Ohkusu K, Mishima N et al (2007) Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. Diagn Micr Infec Dis 58(2):153–161. https://doi.org/10.1016/j.diagmicrobio.2006.12.019
CAS
Article
Google Scholar
Delmas J, Breysse F, Devulder G et al (2006) Rapid identification of Enterobacteriaceae by sequencing DNA gyrase subunit B encoding gene. Diagn Micr Infec Dis 55(4):263–268. https://doi.org/10.1016/j.diagmicrobio.2006.02.003
CAS
Article
Google Scholar
Filippov AA, Sergueev KV, He Y, Huang XZ, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP (2012) Bacteriophage-resistant mutants in Yersiniapestis: identification of phage receptors and attenuation for mice. Adv Exp Med Biol 337(954):48. https://doi.org/10.1371/journal.pone.0025486
CAS
Article
Google Scholar
Hammad AMM (1998) Evaluation of alginate-encapsulated Azotobacter chroococcum as a phage-resistant and an effective inoculum. J Basic Microb 38(1):9–16. https://doi.org/10.1002/(SICI)1521-4028(199803)38:1%3c9::AID-JOBM9%3e3.0.CO;2-4
CAS
Article
Google Scholar
Mi L, Liu Y, Wang C et al (2019) Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 55(3):394–405. https://doi.org/10.1007/s11262-019-01660-4
CAS
Article
PubMed
Google Scholar
Li M, Li P, Chen L et al (2021) Identification of a phage-derived depolymerase specific for KL64 capsule of Klebsiella pneumoniae and its anti-biofilm effect. Virus Genes. https://doi.org/10.1007/s11262-021-01847-8
Article
PubMed
PubMed Central
Google Scholar
Seul A, Müller JJ, Andres D et al (2014) Bacteriophage P22 tailspike: structure of the complete protein and function of the interdomain linker. Acta Crystallogr D Biol Crystallogr 70(5):1336–1345. https://doi.org/10.1107/S1399004714002685
CAS
Article
PubMed
Google Scholar
Barbirz S, Müller JJ, Uetrecht C et al (2008) Crystal structure ofEscherichia coliphage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol Microbiol 69(2):303–316. https://doi.org/10.1111/j.1365-2958.2008.06311.x
CAS
Article
PubMed
Google Scholar
Pertics BZ, Cox A, Nyúl A et al (2021) Isolation and characterization of a novel lytic bacteriophage against the K2 capsule-expressing hypervirulent klebsiella pneumoniae strain 52145, and Identification of its functional depolymerase. Microorganisms 9(3):650. https://doi.org/10.3390/microorganisms9030650
CAS
Article
PubMed
PubMed Central
Google Scholar
Plattner M, Shneider MM, Arbatsky NP et al (2019) Structure and function of the branched receptor-binding complex of bacteriophage CBA120. J Mol Biol 431(19):3718–3739. https://doi.org/10.1016/j.jmb.2019.07.022
CAS
Article
PubMed
Google Scholar
Benjamin MMUS, Datta AR (1995) Acid tolerance of enterohemorrhagic Escherichia coli. Appl Environ Microb 61(4):1669–1672. https://doi.org/10.1128/AEM.61.4.1669-1672.1995
CAS
Article
Google Scholar
Brackett RE, Hao YY, Doyle MP (1994) Ineffectiveness of hot acid sprays to decontaminate Escherichia coli 0157:H7 on Beef. J Food Protect 57(3):198–203. https://doi.org/10.4315/0362-028X-57.3.198
CAS
Article
Google Scholar
Thomas DE, Elliott EJ (2013) Interventions for preventing diarrhea-associated hemolytic uremic syndrome: systematic review. BMC Public Health 13:799. https://doi.org/10.1186/1471-2458-13-799
Article
PubMed
PubMed Central
Google Scholar