Skip to main content

Increased virulence of a novel reassortant H1N3 avian influenza virus in mice as a result of adaptive amino acid substitutions

Abstract

In this study, a novel multiple-gene reassortant H1N3 subtype avian influenza virus (AIV) (A/chicken/Zhejiang/81213/2017, CK81213) was isolated in Eastern China, whose genes were derived from H1 (H1N3), H7 (H7N3 and H7N9), and H10 (H10N3 and H10N8) AIVs. This AIV belongs to the avian Eurasian-lineage and exhibits low pathogenicity. Serial lung-to-lung passages of CK81213 in mice was performed to study the amino acid substitutions potentially related to the adaptation of H1 AIVs in mammals. And the mouse-adapted H1N3 virus showed greater virulence than wild-type H1N3 AIV in mice and the genomic analysis revealed a total of two amino acid substitutions in the PB2 (E627K) and HA (L67V) proteins. Additionally, the results of the animal study indicate that CK81213 could infect mice without prior adaption and become highly pathogenic to mice after continuous passage. Our findings show that routine surveillance of H1 AIVs is important for the prediction of influenza epidemics.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Shirai T, Go M (1991) Rnase-like domain in DNA-directed RNA polymerase-Ii. Proc Natl Acad Sci USA 88(20):9056–9060. https://doi.org/10.1073/pnas.88.20.9056

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Piasecka J, Jarmolowicz A, Kierzek E (2020) Organization of the influenza A virus genomic RNA in the viral replication cycle-structure, interactions, and implications for the emergence of new strains. Pathogens. https://doi.org/10.3390/pathogens9110951

    Article  PubMed  PubMed Central  Google Scholar 

  3. Joseph U, Su YC, Vijaykrishna D, Smith GJ (2017) The ecology and adaptive evolution of influenza A interspecies transmission. Influ Other Respir Viruses 11(1):74–84. https://doi.org/10.1111/irv.12412

    Article  Google Scholar 

  4. Verhagen JH, Eriksson P, Leijten L, Blixt O, Olsen B, Waldenstrom J, Ellstrom P, Kuiken T (2021) Host range of influenza A Virus H1 to H16 in Eurasian Ducks based on tissue and receptor binding studies. J Virol 95(6):e01873-e1920. https://doi.org/10.1128/JVI.01873-20

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG (2005) Characterization of the 1918 influenza virus polymerase genes. Nature 437(7060):889–893. https://doi.org/10.1038/nature04230

    CAS  Article  PubMed  Google Scholar 

  6. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu XY, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RAM, Pappas C, Alpuche-Aranda CM, Lopez-Gatell H, Olivera H, Lopez I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD, Boxrud D, Sambol AR, Abid SH, George KS, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA, Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325(5937):197–201. https://doi.org/10.1126/science.1176225

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Lai S, Qin Y, Cowling BJ, Ren X, Wardrop NA, Gilbert M, Tsang TK, Wu P, Feng L, Jiang H, Peng Z, Zheng J, Liao Q, Li S, Horby PW, Farrar JJ, Gao GF, Tatem AJ, Yu H (2016) Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997–2015: a systematic review of individual case data. Lancet Infect Dis 16(7):e108–e118. https://doi.org/10.1016/S1473-3099(16)00153-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ding X, Luo J, Quan L, Wu A, Jiang T (2017) Evolutionary genotypes of influenza A (H7N9) viruses over five epidemic waves in China. Infect Genet Evol 55:269–276. https://doi.org/10.1016/j.meegid.2017.09.027

    CAS  Article  PubMed  Google Scholar 

  9. Takemae N, Nguyen PT, Le VT, Nguyen TN, To TL, Nguyen TD, Pham VP, Vo HV, Le QVT, Do HT, Nguyen DT, Uchida Y, Saito T (2018) Appearance of reassortant European avian-origin H1 influenza A viruses of swine in Vietnam. Transbound Emerg Dis 65(4):1110–1116. https://doi.org/10.1111/tbed.12849

    CAS  Article  PubMed  Google Scholar 

  10. Wu HB, Guo CT, Lu RF, Xu LH, Wo EK, You JB, Wang YT, Wang QG, Wu NP (2012) Genetic characterization of subtype H1 avian influenza viruses isolated from live poultry markets in Zhejiang Province, China, in 2011. Virus Genes 44(3):441–449. https://doi.org/10.1007/s11262-012-0716-y

    CAS  Article  PubMed  Google Scholar 

  11. Jung K, Song DS, Kang BK, Oh JS, Park BK (2007) Serologic surveillance of swine H1 and H3 and avian H5 and H9 influenza A virus infections in swine population in Korea. Prev Vet Med 79(2–4):294–303. https://doi.org/10.1016/j.prevetmed.2006.12.005

    Article  PubMed  Google Scholar 

  12. Wu HB, Lu RF, Peng XM, Liu FM, Cheng LF, Wu NP (2017) Characterization of reassortant H1-subtype avian influenza viruses isolated from poultry in Zhejiang Province in China from 2013 to 2015. Adv Virol 162(11):3493–3500. https://doi.org/10.1007/s00705-017-3487-x

    CAS  Article  Google Scholar 

  13. Yang F, Xiao Y, Liu F, Yao H, Wu N, Wu H (2021) Molecular characterization and antigenic analysis of reassortant H9N2 subtype avian influenza viruses in Eastern China in 2016. Virus Res 306:198577. https://doi.org/10.1016/j.virusres.2021.198577

    CAS  Article  PubMed  Google Scholar 

  14. Guo Z, Xiaowen L, Zhongming Q, Feng X, Yi P, Daxin P, Xiufan L (2011) Detection and analysis of low pathogenic Avian influenza in poultry in Eastern China from 2002 to 2009. Sci Agric Sin 44(1):153–159

    Google Scholar 

  15. Kunkun Z, Shuguan Z, Guo Z, Lisha R, Yanmei Z, Yan Z, Zhiqiang D, Xiaowen L, Wenbo L, Daxin P, Xiufan L (2012) Epidemiological survey of low pathogenic avian influenza viruses in poultry in Eastern China. Chin J Vet Sci 32(3):345–349

    Google Scholar 

  16. NIH, CDC, USA. Biosafety in microbiological and biomedical laboratories (BMBL), 6th edn. https://www.cdc.gov/labs/BMBL.html. Accessed 17 Oct 2021

  17. China CDC. The list of pathogenic microorganisms. http://www.nhc.gov.cn/wjw/gfxwj/201304/64601962954745c1929e814462d0746c.shtml. Accessed 17 Oct 2021

  18. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Adv Virol 146(12):2275–2289. https://doi.org/10.1007/s007050170002

    CAS  Article  Google Scholar 

  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evolut 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    CAS  Article  Google Scholar 

  20. Reed LMH (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  21. Wu HB, Peng XM, Peng XR, Cheng LF, Jin CZ, Lu XY, Xie TS, Yao HP, Wu NP (2016) Multiple amino acid substitutions involved in the adaptation of avian-origin influenza A (H10N7) virus in mice. Adv Virol 161(4):977–980. https://doi.org/10.1007/s00705-015-2722-6

    CAS  Article  Google Scholar 

  22. Xu G, Wang F, Li Q, Bing G, Xie S, Sun S, Bian Z, Sun H, Feng Y, Peng X, Jiang H, Zhu L, Fan X, Qin Y, Ding J (2020) Mutations in PB2 and HA enhanced pathogenicity of H4N6 avian influenza virus in mice. J Gen Virol 101(9):910–920. https://doi.org/10.1099/jgv.0.001192

    CAS  Article  PubMed  Google Scholar 

  23. Qin JR, Peng O, Shen XT, Gong L, Xue CY, Cao YC (2019) Multiple amino acid substitutions involved in the adaption of three avian-origin H7N9 influenza viruses in mice. Virol J 16:3. https://doi.org/10.1186/S12985-018-1109-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu ZJ, Cheng KH, Sun WY, Zhang XH, Xia XZ, Gao YW (2018) PB2 and HA mutations increase the virulence of highly pathogenic H5N5 clade 2.3.4.4 avian influenza virus in mice. Arch Virol 163(2):401–410. https://doi.org/10.1007/s00705-017-3631-7

    CAS  Article  PubMed  Google Scholar 

  25. Sang XY, Wang AR, Chai TJ, He XJ, Ding J, Gao XL, Li YG, Zhang K, Ren ZG, Li L, Yu ZJ, Wang TC, Feng N, Zheng XX, Wang HL, Zhao YK, Yang ST, Gao YW, Xia XZ (2015) Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adaption in mice. Adv Virol 160(5):1267–1277. https://doi.org/10.1007/s00705-015-2383-5

    CAS  Article  Google Scholar 

  26. Zhang X, Xu G, Wang C, Jiang M, Gao W, Wang M, Sun H, Sun Y, Chang KC, Liu J, Pu J (2017) Enhanced pathogenicity and neurotropism of mouse-adapted H10N7 influenza virus are mediated by novel PB2 and NA mutations. J Gen Virol 98(6):1185–1195. https://doi.org/10.1099/jgv.0.000770

    CAS  Article  PubMed  Google Scholar 

  27. Chen Q, Yu Z, Sun W, Li X, Chai H, Gao X, Guo J, Zhang K, Feng N, Zheng X, Wang H, Zhao Y, Qin C, Huang G, Yang S, Qian J, Gao Y, Xia X, Wang T, Hua Y (2015) Adaptive amino acid substitutions enhance the virulence of an H7N7 avian influenza virus isolated from wild waterfowl in mice. Vet Microbiol 177(1–2):18–24. https://doi.org/10.1016/j.vetmic.2015.02.016

    CAS  Article  PubMed  Google Scholar 

  28. Choi EJ, Lee YJ, Lee JM, Kim YJ, Choi JH, Ahn B, Kim K, Han MG (2020) The effect of mutations derived from mouse-adapted H3N2 seasonal influenza A virus to pathogenicity and host adaptation. PLoS ONE 15(1):e0227516. https://doi.org/10.1371/journal.pone.0227516

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Sakabe S, Ozawa M, Takano R, Iwastuki-Horimoto K, Kawaoka Y (2011) Mutations in PA, NP, and HA of a pandemic (H1N1) 2009 influenza virus contribute to its adaptation to mice. Virus Res 158(1–2):124–129. https://doi.org/10.1016/j.virusres.2011.03.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Wen L, Chu H, Wong BHY, Wang D, Li C, Zhao XY, Chiu MC, Yuan SF, Fan YH, Chen HL, Zhou J, Yuen KY (2018) Large-scale sequence analysis reveals novel human-adaptive markers in PB2 segment of seasonal influenza A viruses. Emerg Microbes Infect 7:47. https://doi.org/10.1038/s41426-018-0050-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Ping J, Dankar SK, Forbes NE, Keleta L, Zhou Y, Tyler S, Brown EG (2010) PB2 and hemagglutinin mutations are major determinants of host range and virulence in mouse-adapted influenza A virus. J Virol 84(20):10606–10618. https://doi.org/10.1128/JVI.01187-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Yang F, Xiao YX, Lu RF, Chen B, Liu FM, Wang LY, Yao HP, Wu NP, Wu HB (2020) Generation of neutralizing and non-neutralizing monoclonal antibodies against H7N9 influenza virus. Emerg Microbes Infect 9(1):664–675. https://doi.org/10.1080/22221751.2020.1742076

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Wu H, Peng X, Peng X, Cheng L, Lu X, Jin C, Xie T, Yao H, Wu N (2015) Genetic and molecular characterization of H9N2 and H5 avian influenza viruses from live poultry markets in Zhejiang Province, eastern China. Sci Rep 5:17508. https://doi.org/10.1038/srep17508

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by grants from the National Science and Technology Major Project for the Control and Prevention of Major Infectious Diseases in China (2018ZX10711001, 2018ZX10102001 and 2020ZX10001016-004-002), Zhejiang Provincial Natural Science Foundation of China (LY19H260006), and the Independent Task of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (2022ZZ02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The animal experiment was approved by the First Affiliated Hospital, School of Medicine, Zhejiang University (No. 2019-39).

Additional information

Edited by William Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11262_2022_1911_MOESM1_ESM.docx

Supplementary Figure S1. Phylogenetic trees of the eight genes of H1N3 avian influenza viruses. The A/chicken/Zhejiang/81213/2017 virus is indicated with a black dot. The scale bar is used to express the unit of distance between sequences. (DOCX 15 kb)

Supplementary file2 (PNG 154 kb)

Supplementary file3 (PNG 116 kb)

Supplementary file4 (PNG 128 kb)

Supplementary file5 (PNG 154 kb)

Supplementary file6 (PNG 163 kb)

Supplementary file7 (PNG 139 kb)

Supplementary file8 (PNG 144 kb)

Supplementary file9 (PNG 155 kb)

11262_2022_1911_MOESM10_ESM.png

Supplementary Figure S2. The representative gross pathology of each group. Red arrows showing typical areas of focal pneumonia. (PNG 724 kb)

11262_2022_1911_MOESM11_ESM.png

Supplementary Figure S3. Positions of amino acid substitutions detected in the mouse-adapted CK81213 virus. The 3D crystal structure of the H1 hemagglutinin (PDB: 3HTO, Green) (A) and PB2 (PDB: 3KHW, Blue) (B) proteins is displayed. The receptor-binding sites and the receptor pocket of the H1 HA protein is indicated in purple and with a purple circle, respectively. The amino acid at position 67 in the HA protein is marked in orange, and the amino acid at position 627 in the PB2 protein is marked in yellow. (PNG 26905 kb)

11262_2022_1911_MOESM12_ESM.png

Supplementary Figure S4. Histological analysis of lungs from mice infected with wide type (WT) and mouse-adapted (MA)-CK81213. (A & B) Histological images show the lungs of mice treated with PBS (mock). (C & D) Histological images show the lungs of mice infected with the wide-type avian influenza virus and (E & F) its mouse-adapted variant at 5 days post-infection. Alveolar edema with fibrin, erythrocytes, and inflammatory cells is indicated by the triangles. Arrows are used to indicate the positive staining of alveolar epithelial cells. A, C and E: H&E staining; B, D and F: IHC. (PNG 47124 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhang, X., Liu, F. et al. Increased virulence of a novel reassortant H1N3 avian influenza virus in mice as a result of adaptive amino acid substitutions. Virus Genes (2022). https://doi.org/10.1007/s11262-022-01911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11262-022-01911-x

Keywords

  • Avian influenza virus
  • H1N3
  • Mouse adaptation
  • Amino acid substitutions
  • Virulence