Landmann F (2019) The Wolbachia endosymbionts. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.BAI-0018-2019
Article
PubMed
Google Scholar
Klasson L, Westberg J, Sapountzis P, Näslund K, Lutnaes Y, Darby AC, Veneti Z, Chen L, Braig HR, Garrett R, Bourtzis K, Andersson SG (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci USA 106(14):5725–5730. https://doi.org/10.1073/pnas.0810753106
Article
PubMed
PubMed Central
Google Scholar
Kent BN, Bordenstein SR (2010) Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol 18(4):173–181. https://doi.org/10.1016/j.tim.2009.12.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Kent BN, Funkhouser LJ, Setia S, Bordenstein SR (2011) Evolutionary genetics of a temperate bacteriophage in an obligate intracellular bacteria (Wolbachia). PLoS ONE 6(9):e24984
CAS
Article
Google Scholar
Bordenstein SR, Bordenstein SR (2016) Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun 7:13155. https://doi.org/10.1038/ncomms13155
CAS
Article
PubMed
PubMed Central
Google Scholar
Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. https://doi.org/10.1038/nrmicro1969
CAS
Article
PubMed
Google Scholar
Fraser JE, De Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, O’Neill SL (2017) Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog 13(12):e1006751. https://doi.org/10.1371/journal.ppat.1006751
CAS
Article
PubMed
PubMed Central
Google Scholar
Sinkins S, Gould F (2006) Gene drive systems for insect disease vectors. Nat Rev Genet 7:427–435. https://doi.org/10.1038/nrg1870
CAS
Article
PubMed
Google Scholar
Biliske JA, Batista PD, Grant CL, Harris HL (2011) The bacteriophage WORiC is the active phage element in wRi of Drosophila simulans and represents a conserved class of WO phages. BMC Microbiol 15(11):251. https://doi.org/10.1186/1471-2180-11-251
CAS
Article
Google Scholar
Christie GE, Dokland T (2012) Pirates of the Caudovirales. Virology 434(2):210–221. https://doi.org/10.1016/j.virol.2012.10.028
CAS
Article
PubMed
Google Scholar
Lang AS, Zhaxybayeva O, Beatty JT (2012) Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 10:472–482. https://doi.org/10.1038/nrmicro2802
CAS
Article
PubMed
PubMed Central
Google Scholar
Westbye AB, Beatty JT, Lang AS (2017) Guaranteeing a captive audience: coordinated regulation of gene transfer agent (GTA) production and recipient capability by cellular regulators. Curr Opin Microbiol 38:122–129. https://doi.org/10.1016/j.mib.2017.05.003
CAS
Article
PubMed
Google Scholar
Ding H, Moksa MM, Hirst M, Beatty JT (2014) Draft Genome Sequences of Six Rhodobacter capsulatus strains, YW1, YW2, B6, Y262, R121, and DE442. Genome Announc 2(1):e00050-14. https://doi.org/10.1128/genomeA.00050-14
Article
PubMed
PubMed Central
Google Scholar
Fallon AM, Baldridge GD, Higgins LA, Witthuhn BA (2013) Wolbachia from the planthopper Laodelphax striatellus establishes a robust, persistent, streptomycin-resistant infection in clonal mosquito cells. In Vitro Cell Dev Biol- Anim 49:66–73. https://doi.org/10.1007/s11626-012-9571-3
CAS
Article
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389
CAS
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu Y-K (2005) Protein database searches using compositionally adjusted substitution matrices. FEBS J 272:5101–5109. https://doi.org/10.1111/j.1742-4658.2005.04945.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066. https://doi.org/10.1093/nar/gkf436.PMID:12136088;PMCID:PMC135756
CAS
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010
CAS
Article
PubMed
PubMed Central
Google Scholar
Rao VB, Feiss M (2015) Mechanisms of DNA packaging by large double-stranded DNA viruses. Annu Rev Virol 2(1):351–378. https://doi.org/10.1146/annurev-virology-100114-055212
CAS
Article
PubMed
PubMed Central
Google Scholar
Wieczorek DJ, Didion L, Feiss M (2002) Alterations of the portal protein, gpB, of bacteriophage lambda suppress mutations in cosQ, the site required for termination of DNA packaging. Genetics 161(1):21–31. https://doi.org/10.1093/genetics/161.1.21
CAS
Article
PubMed
PubMed Central
Google Scholar
Isidro A, Henriques AO, Tavares P (2004) The portal protein plays essential roles at different steps of the SPP1 DNA packaging process. Virology 322(2):253–263
CAS
Article
Google Scholar
Ivanovska I, Wuite G, Jönsson B, Evilevitch E (2007) Internal DNA pressure modifies stability of WT phage. Proc Natl Acad Sci USA 104(23):9603–9608. https://doi.org/10.1073/pnas.0703166104
CAS
Article
PubMed
PubMed Central
Google Scholar
Sherlock D, Leong JX, Fogg PCM (2019) Identification of the first gene transfer agent (GTA) small terminase in Rhodobacter capsulatus and its role in GTA production and packaging of DNA. J Virol 93:e01328-e1419. https://doi.org/10.1128/JVI.01328-19
CAS
Article
PubMed
PubMed Central
Google Scholar
Maxwell KL, Davidson AR, Murialdo H, Gold M (2000) Thermodynamic and functional characterization of protein W from bacteriophage λ. J Biol Chem 275:18879–18886
CAS
Article
Google Scholar
Kupritz J, Martin J, Fischer K, Curtis KC, Fauver JR, Huang Y, Choi YJ, Beatty WL, Mitreva M, Fischer PU (2021) Isolation and characterization of a novel bacteriophage WO from Allonemobius socius crickets in Missouri. PLoS ONE 16(7):e0250051
CAS
Article
Google Scholar
Kosinski J, Feder M, Bujnicki JM (2005) The PD-(D/E)XK superfamily revisited: identification of new members among proteins involved in DNA metabolism and functional predictions for domains of (hitherto) unknown function. BMC Bioinform 6:172
Article
Google Scholar
Knizewski L, Kinch LN, Grishin NV, Rychlewski L, Ginalski K (2007) Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches. BMC Struct Biol 7:40. https://doi.org/10.1186/1472-6807-7-40
CAS
Article
PubMed
PubMed Central
Google Scholar
Fallon AM (2020) Computational evidence for antitoxins associated with RelE/ParE, RatA, Fic, and AbiEii-family toxins in Wolbachia genomes. Mol Genet Genom 295:891–909. https://doi.org/10.1007/s00438-020-01662-0
CAS
Article
Google Scholar
Furukawa S, Tanaka K, Ikeda T, Fukatsu T, Sasaki T (2012) Quantitative analysis of the lytic cycle of WO phages infecting Wolbachia. Appl Entomol Zool 47:449–456. https://doi.org/10.1007/s13355-012-0142-6
Article
Google Scholar
Miao Y-h, Xiao J-h, Huang D-w (2020) Distribution and evolution of the bacteriophage WO and its antagonism with Wolbachia. Front Microbiol 11:595629. https://doi.org/10.3389/fmicb.2020.595629
Article
PubMed
PubMed Central
Google Scholar
Rapala J, Miller B, Garcia M, Dolan M, Bockman M, Hansson M et al (2021) Genomic diversity of bacteriophages infecting Rhodobacter capsulatus and their relatedness to its gene transfer agent RcGTA. PLoS ONE 16(11):e0255262
CAS
Article
Google Scholar
Fallon AM (2021) DNA recombination and repair in Wolbachia: RecA and related proteins. Mol Genet Genom 296:437–456
CAS
Article
Google Scholar
Masui S, Kamoda S, Sasaki T, Ishikawa H (2000) Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 51:491–497. https://doi.org/10.1007/s002390010112
CAS
Article
PubMed
Google Scholar
Pruss GJ, Calendar R (1978) Maturation of bacteriophage P2 DNA. Virology 86:454–467. https://doi.org/10.1016/0042-6822(78)90085-5
CAS
Article
PubMed
Google Scholar
Six EW, Sunshine MG, Williams J, Haggard-Ljungquist E, Lindqvist BH (1991) Morphogenetic switch mutations of bacteriophage P2. Virology 182:34–46. https://doi.org/10.1016/0042-6822(91)90645-r
CAS
Article
PubMed
Google Scholar
Chatterjee S, Rothenberg E (2012) Interaction of bacteriophage λ with its E. coli receptor. LamB Viruses 4:3162–3178. https://doi.org/10.3390/v4113162
CAS
Article
PubMed
Google Scholar
Gavotte L, Vavre F, Henri H, Ravallec M, Stouthamer R, Boulétreau M (2004) Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Mol Biol 13:147–153
CAS
Article
Google Scholar
Lang AS, Taylor TA, Beatty JT (2002) Evolutionary implications of phylogenetic analyses of the gene transfer agent (GTA) of Rhodobacter capsulatus. J Mol Evol 55:534–543. https://doi.org/10.1007/s00239-002-2348-7
CAS
Article
PubMed
Google Scholar