Skip to main content
Log in

VP7, VP4, and NSP4 genes of species a rotaviruses isolated from sewage in Nigeria, 2014/2015: partial sequence characterization and biophysical analysis of NSP4 (enterotoxin)

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Species A rotavirus are an important cause of childhood gastroenteritis, and the main contributor to its pathogenicity is the enterotoxin (NSP4) protein. Some biophysical properties of partial NSP4 genes of RVAs isolated from sewage in Nigeria during 2014/2015 were investigated. Samples were typed by RT-PCR and Sanger sequencing of partial VP4, VP7 and NSP4 genes. Phylogeny identified lineages within genotypes, predicted glycosylation sites; hydrophobicity profiles and amino acid alignments were employed to determine some biophysical properties of the NSP4 protein. The VP7 sequences of our isolates were the most diversified, the majority of the isolates carried NSP4 genes of the E1 genotype. Genotype specific variations both in hydrophobicity and potential glycosylation were identified, mutations were highest within the H3 hydrophobic domain and VP4 binding domain. The study of RVA NSP4 genes from non-clinical samples revealed that there were structural consistencies with those of reference genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Sequence data generated from this research has been deposited in GenBank, DDBJ, and ENA under the accession numbers KU866451-KU866454; MN781157-MN781164; KY964455, KY964456, MN781166-MN781171; KY964451-KY964454; MN781172-MN781176. [See also Supplementary Table 3.]

References

  1. Troeger CE, Khalil IA, Blacker BI, Biehl MI, Albertson SB, Zimsen SR et al (2020) Quantifying risks and interventions that have affected the burden of diarrhoea among children younger than 5 years: an analysis of the Global Burden of Disease Study 2017. Lancet Infect Dis 20(1):37–59

    Article  Google Scholar 

  2. Japhet MO, Famurewa O, Iturriza-Gomara M, Adesina OA, Opaleye OO, Niendorf S et al (2018) Group A rotaviruses circulating prior to a national immunization programme in Nigeria: clinical manifestations, high G12P[8] frequency, intra-genotypic divergence of VP4 and VP7. J Med Virol 90(2):239–249

    Article  CAS  Google Scholar 

  3. Strydom A, João ED, Motanyane L, Nyaga MM, Christiaan Potgieter A, Cuamba A et al (2019) Whole genome analyses of DS-1-like Rotavirus A strains detected in children with acute diarrhoea in southern Mozambique suggest several reassortment events. Infect Genet Evol 69:68–75

    Article  CAS  Google Scholar 

  4. Mhango C, Mandolo JJ, Chinyama E, Wachepa R, Kanjerwa O (2020) Rotavirus genotypes in hospitalized children with acute gastroenteritis before and after rotavirus vaccine introduction in Blantyre, Malawi, 1997–2019. J Infect Dis. https://doi.org/10.1093/infdis/jiaa616

    Article  PubMed  Google Scholar 

  5. Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM et al (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82(7):3204–3219

    Article  CAS  Google Scholar 

  6. Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM et al (eds) Fields Virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 1347–1401

    Google Scholar 

  7. Sastri NP, Crawford SE, Estes MK (2016) Pleiotropic properties of rotavirus non-structural protein 4 (NSP4) and their effects on viral replication and pathogenesis. In: Svensson L, Desselberger U, Greenberg HB, Estes MK (eds) Viral gastroenteritis. Academic Press, Elsevier, Amsterdam, pp 145–174

    Chapter  Google Scholar 

  8. Silvestri LS, Tortorici MA, Vasquez-Del Carpio R, Patton JT (2005) Rotavirus glycoprotein NSP4 is a modulator of viral transcription in the infected cell. J Virol 79(24):15165–15174

    Article  CAS  Google Scholar 

  9. Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Bányai K, Estes MK et al (2008) Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153(8):1621–1629

    Article  CAS  Google Scholar 

  10. Alkali BR, Daneil AI, Magaji AA, Bilbis IS, Bande F (2016) Molecular characterization of rotavirus from children with diarrhoeal disease in Sokoto State. Mol Biol Int, Nigeria. https://doi.org/10.1155/2016/1876065

    Book  Google Scholar 

  11. Lartey BL, Damanka S, Dennis FE, Enweronu-Laryea CC, Addo-Yobo E, Ansong D et al (2018) Rotavirus strain distribution in Ghana pre- and post- rotavirus vaccine introduction. Vaccine 36(47):7238–7242

    Article  Google Scholar 

  12. Seheri LM, Magagula NB, Peenze I, Rakau K, Ndadza A, Mwenda JM et al (2018) Rotavirus strain diversity in Eastern and Southern African countries before and after vaccine introduction. Vaccine 36(47):7222–7230

    Article  CAS  Google Scholar 

  13. Ball JM, Tian P, Zeng CQ, Morris AP, Estes MK (1996) Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272(5258):101–104

    Article  CAS  Google Scholar 

  14. Hyser JM, Collinson-Pautz MR, Utama B, Estes MK (2010) Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. MBio 1(5):e00265-10

    Article  Google Scholar 

  15. Pham T, Perry JL, Dosey TL, Delcour AH, Hyser JM (2017) The Rotavirus NSP4 Viroporin Domain is a Calcium-conducting Ion Channel. Sci Rep 7:43487

    Article  Google Scholar 

  16. Mukherjee A, Patra U, Bhowmick R, Chawla-Sarkar M (2018) Rotaviral nonstructural protein 4 triggers dynamin-related protein 1-dependent mitochondrial fragmentation during infection. Cell Microbiol 20(6):e12831

    Article  Google Scholar 

  17. Chattopadhyay S, Mukherjee A, Patra U, Bhowmick R, Basak T, Sengupta S et al (2017) Tyrosine phosphorylation modulates mitochondrial chaperonin Hsp60 and delays rotavirus NSP4-mediated apoptotic signaling in host cells. Cell Microbiol. https://doi.org/10.1111/cmi.12670.10.1111/cmi.12670

    Article  PubMed  Google Scholar 

  18. Motayo BO, Faneye AO, Adeniji JA (2018) Epidemiology of rotavirus A in Nigeria: genetic diversity and current insights. J Pathogn 2018:6513682. https://doi.org/10.1155/2018/6513682

    Article  CAS  Google Scholar 

  19. World Health Organization (2003) Guidelines for environmental surveillance of Polio circulation. Department of vaccines and Biologicals, Geneva. WHO. CH-1211. Geneva, Switzerland. www.who.int/vaccines-documents/.

  20. Motayo BO, Adeniji AJ, Faneye AO (2016) First Molecular detection and VP7 (G) genotyping of Group A Rotavirus by semi-nested RT-PCR from sewage in Nigeria. Rev Inst Med Trop Sao Paulo 58:74. https://doi.org/10.1590/S1678-9946201658074

    Article  PubMed  PubMed Central  Google Scholar 

  21. Iturriza-Gomara M, Kang G, Gray J (2003) Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. J Clin Virol 31(4):259–265

    Article  Google Scholar 

  22. Simmonds MK, Armah G, Asmah R, Banerjee I, Damanka S, Esona M (2008) New oligonucleotide primers for P-typing of rotavirus strains: strategies for typing previously untypeable strains. J Clin Virol 42(4):368–373

    Article  CAS  Google Scholar 

  23. Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J (1992) Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 30:1365–1373

    Article  CAS  Google Scholar 

  24. Chitambar SD, Arora R, Chhabra P (2009) Molecular characterization of a rare G1P[19] rotavirus strain from India: evidence of reassortment between human and porcine rotavirus strains. J Med Microbiol 58(12):1611–1615

    Article  CAS  Google Scholar 

  25. Maes P, Matthijnssens J, Rahman M, Van Ranst M (2009) RotaC: aweb-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol 9:238

    Article  Google Scholar 

  26. Hansen JE, Lund O, Nilsson J, Rapacki K, Brunak S (1998) O-GLYCBASE version 30: a revised database of O-glycosylated proteins. Nucleic Acids Res 26(1):387–389

    Article  CAS  Google Scholar 

  27. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  Google Scholar 

  28. Ianiro G, Delogu R, Baba M, Oderinde BS, Dawurung J, Ruggerri FM, et al (2015) Molecular characterization of group A rotavirus strains detected in children with diarrhea admitted to Nigerian hospitals in 2013. Adv Virol 160(6):1511–1517

    CAS  Google Scholar 

  29. Hemming M, Vesikari T (2012) Vaccine-derived human-bovine double reassortant rotavirus in infants with acute gastroenteritis. Pediatr Infect Dis J 31(9):992–994

    Article  Google Scholar 

  30. Roy S, Rungsrisuriyachai K, Esona MD, Boom JA, Sahni LC, Rench MA et al (2015) G2P[4]-RotaTeq reassortant rotavirus in vaccinated child, United States. Emerg Infect Dis 21(11):2103–2104

    Article  CAS  Google Scholar 

  31. Rasebotsa S, Uwimana J, Mogotsi MT, Rakau K, Magagula NB, Seheri ML et al (2021) Whole-genome analyses identifies multiple reassortant rotavirus strains in Rwanda post-vaccine introduction. Viruses 13:95. https://doi.org/10.3390/v13010095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nyaga MM, Stucker KM, Esona MD, Jere KC, Mwinyi B, Shonhai A et al (2014) Whole-genome analyses of DS-1-like human G2P[4] and G8P[4] rotavirus strains from Eastern. Western and Southern Africa Virus Genes 49(2):196–207

    Article  CAS  Google Scholar 

  33. Rasebotsa S, Mwangi PN, Mogotsi MT, Sabiu S, Magagula NB, Rakau K et al (2020) Whole genome and in-silico analyses of G1P[8] rotavirus strains from pre- and post-vaccination periods in Rwanda. Sci Rep 10(1):13460

    Article  CAS  Google Scholar 

  34. João ED, Munlela B, Chissaque A, Chilaúle J, Langa J, Augusto O et al (2020) Molecular epidemiology of rotavirus A strains pre- and post-vaccine (Rotarix®) introduction in mozambique, 2012–2019: emergence of genotypes G3P[4] and G3P[8]. Pathogens (Basel, Switzerland) 9(9):671. https://doi.org/10.3390/pathogens9090671

    Article  CAS  Google Scholar 

  35. Strydom A, Donato CM, Nyaga MM, Boene SS, Peenze I, Mogotsi MT et al (2021) Genetic characterisation of south African and Mozambican bovine rotaviruses reveals a typical bovine-like artiodactyl constellation derived through multiple reassortment events. Pathogens (Basel, Switzerland) 10(10):1308. https://doi.org/10.3390/pathogens10101308

    Article  CAS  Google Scholar 

  36. González-Ochoa G, Menchaca GE, Hernández CE, Rodríguez C, Tamez RS, Contreras JF (2013) Mutation distribution in the NSP4 protein in rotaviruses isolated from Mexican children with moderate to severe gastroenteritis. Viruses 5(3):792–805

    Article  Google Scholar 

  37. Fujii Y, Oda M, Somura Y, Shinkai T (2020) Molecular characteristics of novel mono-reassortant G9P[8] rotavirus A strains possessing the NSP4 gene of the E2 genotype detected in Tokyo. Japan Jap J Infec Dis 73(1):26–35

    CAS  Google Scholar 

  38. Bergmann CC, Maass D, Poruchynsky MS, Atkinson PH, Bellamy AR (1989) Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. EMBO J 8(6):1695–1703

    Article  CAS  Google Scholar 

  39. Deepa R, Durga Rao C, Suguna K (2007) Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4. Arch Virol 152(5):847–859

    Article  CAS  Google Scholar 

  40. Tavares Tde M, Brito WM, Fiaccadori FS, Freitas ER, Parente JA, Costa PS (2008) Molecular characterization of the NSP4 gene of human group A rotavirus samples from the West Central region of Brazil. Mem Inst Oswaldo Cruz 103(3):288–294

    Article  Google Scholar 

  41. Zhang M, Zeng CQ, Dong Y, Ball JM, Saif LJ, Morris AP (1998) Mutations in rotavirus nonstructural glycoprotein NSP4 are associated with altered virus virulence. J Virol 72(5):3666–3672

    Article  CAS  Google Scholar 

  42. Mohan KV, Dermody TS, Atreya CD (2000) Mutations selected in rotavirus enterotoxin NSP4 depend on the context of its expression. Virology 275(1):125–132

    Article  CAS  Google Scholar 

  43. Sastri NP, Viskovska M, Hyser JM, Tanner MR, Horton LB, Sankaran B et al (2014) Structural plasticity of the coiled-coil domain of Rotavirus NSP4. J Virol 88(23):13602–13612. https://doi.org/10.1128/JVI.02227-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar S, Ramappa R, Pamidimukkala K, Rao CD, Suguna K (2018) New tetrameric forms of the rotavirus NSP4 with antiparallel helices. Arch Virol 163(6):1531–1547

    Article  CAS  Google Scholar 

  45. Pauly M, Oni OO, Sausy A, Owoade AA, Adeyefa CAO, Muller CP et al (2017) Molecular epidemiology of avian rotaviruses group A and D shed by different bird species in Nigeria. Virol J 14(1):111

    Article  Google Scholar 

  46. Ben Hadj Fredj M, Ben Hamida-Rebai M, Zeller M, Heylen E, Vn Ranst M (2014) Sequence and structural analyses of NSP4 proteins from human group A rotavirus strains detected in Tunisia. Pathol Biol (Paris) 62(3):146–151

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any funding or financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babatunde O. Motayo.

Ethics declarations

Conflict of interest

We declare that there are no conflicts of interest regarding the publication of this research work.

Informed consent

Informed consent was not required because human subjects were not recruited in this study.

Research involved in human and/or animal participants

This research did not involve any human or animal subjects.

Additional information

Edited by Wolfram H. Gerlich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motayo, B.O., Faneye, A.O. & Adeniji, J.A. VP7, VP4, and NSP4 genes of species a rotaviruses isolated from sewage in Nigeria, 2014/2015: partial sequence characterization and biophysical analysis of NSP4 (enterotoxin). Virus Genes 58, 180–187 (2022). https://doi.org/10.1007/s11262-022-01895-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-022-01895-8

Keywords

Navigation