Skip to main content

Advertisement

Log in

Trichodysplasia spinulosa polyomavirus small T antigen synergistically modulates S6 protein translation and DNA damage response pathways to shape host cell environment

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

TSPyV is a viral agent linked to Trichodysplasia spinulosa, a disfiguring human skin disease which presents with hyperkeratotic spicule eruption in immunocompromised hosts. This proliferative disease state requires extensive modulation of the host cell environment. While the small T (sT) antigen of TSPyV has been postulated to cause widespread cellular perturbation, its specific substrates and their mechanistic connection are unclear. To identify the cellular substrates and pathways perturbed by TSPyV sT and propose a nuanced model that reconciles the multiple arms of TSPyV pathogenesis, changes in expression of several proteins and phospho-proteins in TSPyV sT expressing and TSPyV sT deletion mutant-expressing cell lysates were interrogated using Western blot assays. TSPyV sT expression exploits the DNA damage response pathway, by inducing hyperphosphorylation of ATM and 53BP1 and upregulation of BMI-1. Concurrently, sT dysregulates the S6 protein translation pathway via hyperphosphorylation of CDC2, p70 S6 kinase, S6, and PP1α. The S6S244/247 and p-PP1αT320 phospho-forms are points of overlap between the DDR and S6 networks. We propose a mechanistic rationale for previous reports positioning sT antigen as the key driver of TSPyV pathogenesis. We illuminate novel targets in the S6 and DDR pathways and recognize a potential synergy between these pathways. TSPyV may sensitize the cell to both unrestricted translation and genomic instability. This multi-pronged infection model may inform future therapeutic modalities against TSPyV and possibly other viruses with overlapping host substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

TSPyV:

Trichodysplasia spinulosa polyomavirus

TS:

Trichodysplasia spinulosa

sT:

Small tumor

MCPyV:

Merkel cell polyomavirus

DDR:

DNA damage response

ATM:

Ataxia-telangiectasia mutated

ATR:

ATM and Rad3-related

PVDF:

Polyvinylidene difluoride

PP1α:

Protein phosphatase 1 α

p-53BP1:

P53-binding protein 1

NHEJ:

Non-homologous end-joining

BMI-1:

B-cell specific moloney murine virus integration site 1

DSB:

Double-stranded breaks

HR:

Homologous recombination

References

  1. van der Meijden E, Janssens RW, Lauber C, Bouwes Bavinck JN, Gorbalenya AE, Feltkamp MC (2010) Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLOS Pathog 6:e1001024

    Article  Google Scholar 

  2. Borgogna C, Albertini S, Zavattaro E et al (2019) Primary trichodysplasia spinulosa polyomavirus infection in a kidney transplant child displaying virus-infected decoy cells in the urine. J Med Virol 91(10):1896–1900. https://doi.org/10.1002/jmv.25519

    Article  PubMed  Google Scholar 

  3. Prado J, Monezi T, Amorim A, Lino V, Paladino A, Boccardo E (2019) Human polyomaviruses and cancer: an overview. Clinics. https://doi.org/10.6061/clinics/2018/e558s

    Article  Google Scholar 

  4. DeCaprio J, Garcea R (2013) A cornucopia of human polyomaviruses. Nat Rev Microbiol 11:264–276. https://doi.org/10.1038/nrmicro2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kazem S, van der Meijden E, Wang RC et al (2014) Polyomavirus-associated trichodysplasia spinulosa involves hyperproliferation, pRB phosphorylation and upregulation of p16 and p21. PLoS One 9:e108947

    Article  Google Scholar 

  6. White MK, Gordon J, Khalili K (2013) The rapidly expanding family of human polyomaviruses: recent developments in understanding their life cycle and role in human pathology. PLoS Pathog 9(3):e1003206. https://doi.org/10.1371/journal.ppat.1003206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu JH, Simonette RA, Nguyen HP, Doan HQ, Rady PL, Tyring SK (2016) Emerging differential roles of the pRb tumor suppressor in trichodysplasia spinulosa-associated polyomavirus and Merkel cell polyomavirus pathogeneses. J Clin Virol 76:40–43. https://doi.org/10.1016/j.jcv.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  8. Wu JH, Narayanan D, Limmer A, Simonette RA, Rady PL, Tyring SK (2019) Merkel cell polyomavirus (MCPyV) small T antigen induces DNA damage response. Intervirology 62:96–100. https://doi.org/10.1159/000501419

    Article  CAS  PubMed  Google Scholar 

  9. Wu JH, Simonette RA, Nguyen HP, Rady PL, Tyring SK (2016) Small T-antigen of the TS-associated polyomavirus activates factors implicated in the MAPK pathway. J Eur Acad Dermatol Venereol 6:1061–1062

    Article  Google Scholar 

  10. Sheu JC, Tran J, Rady PL, Dao H, Tyring SK, Nguyen HP (2019) Polyomaviruses of the skin: integrating molecular and clinical advances in an emerging class of viruses. Brit J Dermatol 180:1302–1311. https://doi.org/10.1111/bjd.17592

    Article  CAS  Google Scholar 

  11. Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5:1–17

    Article  Google Scholar 

  12. Meyuhas O (2015) Ribosomal protein s6 phosphorylation: four decades of research. Int Rev Cell Mol Biol 320:41–73. https://doi.org/10.1016/bs.ircmb.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  13. Belandia B, Brautigan D, Martinperez J (1994) Mol Cell Biol 14:200–206

  14. Li Y, Mitsuhashi S, Ikejo M et al (2012) Relationship between ATM and ribosomal protein S6 revealed by the chemical inhibition of Ser/Thr protein phosphatase type 1. Biosci Biotechnol Biochem 76:486–494. https://doi.org/10.1271/bbb.110774

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen HP, Patel A, Simonette RA, Rady P, Tyring SK (2014) Binding of the trichodysplasia spinulosa-associated polyomavirus small T antigen to protein phosphatase 2A: elucidation of a potential pathogenic mechanism in a rare skin disease. JAMA Dermatol 150:1234–1236

    Article  Google Scholar 

  16. Cho US, Morrone S, Sablina AA, Arroyo JD, Hahn WC, Xu W (2007) Structural basis of PP2A inhibition by small t antigen. PLoS Biol 5(8):e202

    Article  Google Scholar 

  17. Gupta A, Hunt CR, Chakraborty S, Pandita RK, Yordy J, Ramnarain DB, Horikoshi N, Pandita TK (2014) Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res 181(1):1–8

    Article  CAS  Google Scholar 

  18. Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H, Cao LY, Ahn BH (2009) Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459(7245):387–392

    Article  CAS  Google Scholar 

  19. Bhattacharya R, Mustafi SB, Street M, Dey A, Dwivedi SK (2015) Bmi-1: at the crossroads of physiological and pathological biology. Genes Dis 2(3):225–239

    Article  Google Scholar 

  20. Forester CM, Maddox J, Louis JV, Goris J, Virshup DM (2007) Control of mitotic exit by PP2A regulation of Cdc25C and Cdk1. Proc Natl Acad Sci USA 104:19867–19872. https://doi.org/10.1073/pnas.0709879104

    Article  PubMed  PubMed Central  Google Scholar 

  21. De Smedt V, Poulhe R, Cayla X et al (2002) Thr-161 phosphorylation of monomeric Cdc2. J Biol Chem 32:28592–28600. https://doi.org/10.1074/jbc.m202742200

    Article  Google Scholar 

  22. Otero JJ, Tihan T (2011) Morphological analysis of CDC2 and glycogen synthase kinase 3β phosphorylation as markers of G2 → M transition in glioma. Pathol Res Int 216086:1–19. https://doi.org/10.4061/2011/216086

    Article  Google Scholar 

  23. Shah OJ, Ghosh S, Hunter T (2003) Mitotic regulation of ribosomal S6 kinase 1 involves Ser/Thr, Pro phosphorylation of consensus and non-consensus sites by Cdc2. J Biol Chem 278:16433–16442. https://doi.org/10.1074/jbc.m300435200

    Article  CAS  PubMed  Google Scholar 

  24. Biever A, Valjent E, Puighermanal E (2015) Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2015.00075

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yu JSL, Cui W (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143:3050–3060. https://doi.org/10.1242/dev.137075

    Article  CAS  PubMed  Google Scholar 

  26. Liu CWY, Wang R, Dohadwala M, Schönthal AH, Villa-Moruzzi E, Berndt N (1999) Inhibitory phosphorylation of PP1α catalytic subunit during the G1/S transition. J Biol Chem 274:29470–29475. https://doi.org/10.1074/jbc.274.41.29470

    Article  CAS  PubMed  Google Scholar 

  27. Ramos F, Villoria MT, Alonso-Rodríguez E, Clemente-Blanco A (2019) Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 3:70–85

    Article  CAS  Google Scholar 

  28. Peng A, Lewellyn AL, Schiemann WP, Maller JL (2010) Repo-man controls a protein phosphatase 1-dependent threshold for DNA damage checkpoint activation. Curr Biol 20:387–396. https://doi.org/10.1016/j.cub.2010.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cannan WJ, Pederson DS (2016) Mechanisms and consequences of double-strand DNA break formation in chromatin. J Cell Physiol 231:3–14. https://doi.org/10.1002/jcp.25048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsuoka S, Ballif BA, Smogorzewska A et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Sci 316:1160–1166

    Article  CAS  Google Scholar 

  31. Stokes MP, Rush J, Macneill J et al (2007) Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA 104:19855–19860

    Article  CAS  Google Scholar 

  32. Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Yousefi B, Mihanfar A, Karimian A, Majidinia M (2019) 53BP1: a key player of DNA damage response with critical functions in cancer. DNA Repair 73:110–119

    Article  CAS  Google Scholar 

  33. Xiong X, Du Z, Wang Y et al (2015) 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res 43:1659–1670

    Article  CAS  Google Scholar 

  34. Panier S, Boulton SJ (2014) Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol 15:7–18

    Article  CAS  Google Scholar 

  35. Facchino S, Abdouh M, Chatoo W, Bernier G (2010) BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J Neurosci 30:10096–10111. https://doi.org/10.1523/jneurosci.1634-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bill CA, Summers J (2004) Genomic DNA double-strand breaks are targets for hepadnaviral DNA integration. Proc Natl Acad Sci USA 101:11135–11140

    Article  CAS  Google Scholar 

  37. Wu JH, Narayanan D, Limmer AL, Simonette RA, Rady PL, Tyring SK (2019) Merkel cell polyomavirus small T antigen induces DNA damage response. Intervirology 62(2):96–100

    Article  CAS  Google Scholar 

  38. Turnell AS, Grand RJ (2012) DNA viruses and the cellular DNA-damage response. J Gen Virol 93:2076–2097. https://doi.org/10.1099/vir.0.044412-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

DN: design of the project, analysis and interpretation of data, drafting and revising the manuscript, final approval of the manuscript to be published, and agreement to be accountable for all aspects of the work. DT: acquisition of data, drafting and revising the manuscript, final approval of the manuscript to be published, and agreement to be accountable for all aspects of the work. BRB: acquisition of data, revising the manuscript, final approval of the manuscript to be published, and agreement to be accountable for all aspects of the work. SAM: acquisition of data, revising the manuscript, final approval of the manuscript to be published, and agreement to be accountable for all aspects of the work. RAS: acquisition and analysis of data, revising the manuscript, final approval of the manuscript to be published, and agreement to be accountable for all aspects of the work. PLR: design of the project, analysis and interpretation of data, revising the manuscript, final approval of the manuscript to be published, and agreement to be accountable for all aspects of the work. SKT: design of the project, analysis and interpretation of data, revising the manuscript, final approval of the manuscript to be published, and agreement to be accountable for all aspects of the work.

Corresponding author

Correspondence to Stephen K. Tyring.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Ethical approval

Ethical approval was not required because no identifiable human or animal material was used in this study.

Additional information

Edited by Wolfram H. Gerlich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, D., Tahseen, D., Bartley, B.R. et al. Trichodysplasia spinulosa polyomavirus small T antigen synergistically modulates S6 protein translation and DNA damage response pathways to shape host cell environment. Virus Genes 58, 35–41 (2022). https://doi.org/10.1007/s11262-021-01880-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-021-01880-7

Keywords

Navigation