Skip to main content

Interaction of influenza A virus NS1 and cytoskeleton scaffolding protein α-actinin 4

Abstract

NS1 (Non-structural protein 1) is a non-structural protein that can highly express when the avian influenza virus infects the host cells. NS1 can interact with various proteins to alter the intracellular distribution of host proteins and regulate the virulence and pathogenicity of the avian influenza virus. To further study the role of NS1 protein in replication and pathogenesis of avian influenza virus, Glutathione S-transferase (GST) Pull-down was used for screening more proteins interacting with NS1 in human lung adenocarcinoma cell line A549. By mass spectrometry, a potential interacted protein is identified as α-actinin 4 and its interaction with NS1 has not been reported yet. The interaction between NS1 and α-actinin 4 in vitro was confirmed by enzyme-linked immunosorbent assay experiments, and the results showed that the absorbance value of OD450nm in the experimental group was positively correlated with the concentration of NS1-GST protein compared to the negative control group. The co-immunoprecipitation and immunofluorescence results further confirmed the interaction between NS1 and α-actinin 4 at the cellular level. The interaction between NS1 and α-actinin 4 provided a new target for pathogenic mechanism studying and drug screening.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Hale BG, Barclay WS, Randall RE, Russell RJ (2008) Structure of an avian influenza A virus NS1 protein effector domain. Virology 378(1):1–5

    CAS  Article  Google Scholar 

  2. Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, Farzan M, Inoue S, Jung JU, Garcia-Sastre A (2009) Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5(5):439–449

    CAS  Article  Google Scholar 

  3. Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, Nistal-Villan E, Garcia-Sastre A, Gack MU (2012) Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog 8(11):e1003059

    CAS  Article  Google Scholar 

  4. Min JY, Li S, Sen GC, Krug RM (2007) A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virology 363(1):236–243

    CAS  Article  Google Scholar 

  5. Watanabe Y, Ibrahim MS, Suzuki Y, Ikuta K (2012) The changing nature of avian influenza A virus (H5N1). Trends Microbiol 20(1):20

    Article  Google Scholar 

  6. Mok BWY, Song WJ, Wang P, Tai H, Chen YX, Zheng M, Wen X, Lau SY, Wu WL, Matsumoto K, Yuen KY, Chen HL (2012) The ns1 protein of influenza a virus interacts with cellular processing bodies and stress granules through rna-associated protein 55 (rap55) during virus infection. J Virol 86(23):12695

    CAS  Article  Google Scholar 

  7. Heikkinen LS, Kazlauskas A, Melén K, Wagner R, Ziegler T, Julkunen I, Saksela K (2008) Avian and 1918 Spanish influenza A virus NS1 proteins bind to Crk/CrkL Src homology 3 domains to activate host cell signaling. J Biol Chem 283(9):5719

    CAS  Article  Google Scholar 

  8. Zhu Z, Shi Z, Yan W, Wei J, Shao D, Deng X, Wang S, Li B, Tong G, Ma Z (2013) Nonstructural protein 1 of influenza A virus interacts with human guanylate-binding protein 1 to antagonize antiviral activity. PLoS ONE 8(2):e55920

    CAS  Article  Google Scholar 

  9. Aragon T, de la Luna S, Novoa I, Carrasco L, Ortin J, Nieto A (2000) Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus. Mol Cell Biol 20(17):6259–6268

    CAS  Article  Google Scholar 

  10. de Chassey B, Aublin-Gex A, Ruggieri A, Meyniel-Schicklin L, Pradezynski F, Davoust N, Chantier T, Tafforeau L, Mangeot PE, Ciancia C, Perrin-Cocon L, Bartenschlager R, Andre P, Lotteau V (2013) The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication. PLoS Pathog 9(7):e1003440

    Article  Google Scholar 

  11. Ma Y, Sun J, Gu L, Bao H, Zhao Y, Shi L, Yao W, Tian G, Wang X, Chen H (2017) Annexin A2 (ANXA2) interacts with nonstructural protein 1 and promotes the replication of highly pathogenic H5N1 avian influenza virus. BMC Microbiol 17(1):191

    Article  Google Scholar 

  12. Kuo RL, Li ZH, Li LH, Lee KM, Tam EH, Liu HM, Liu HP, Shih SR, Wu CC (2016) Interactome analysis of the NS1 protein encoded by influenza A H1N1 virus reveals a positive regulatory role of host protein PRP19 in viral replication. J Proteome Res 15(5):1639–1648

    CAS  Article  Google Scholar 

  13. Zhu CY, Zheng FL, She XS, Zhao D, Gu Y, Duan YT, Chang AK, Liu HS (2015) Identification of NS1 domains of avian H5N1 influenza virus which influence the interaction with the NOLC1 protein. Virus Genes 50(2):238–244

    CAS  Article  Google Scholar 

  14. Zhu C, Zheng F, Sun T, Duan Y, Cao J, Feng H, Shang L, Zhu Y, Liu H (2013) Interaction of avian influenza virus NS1 protein and nucleolar and coiled-body phosphoprotein 1. Virus Genes 46(2):287–292

    CAS  Article  Google Scholar 

  15. Han X, Li Z, Chen H, Wang H, Mei L, Wu S, Zhang T, Liu B, Lin X (2012) Influenza virus A/Beijing/501/2009(H1N1) NS1 interacts with beta-tubulin and induces disruption of the microtubule network and apoptosis on A549 cells. PLoS ONE 7(11):e48340

    CAS  Article  Google Scholar 

  16. Chen Z, Li Y, Krug RM (1999) Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3’-end processing machinery. EMBO J 18(8):2273–2283

    CAS  Article  Google Scholar 

  17. Melen K, Tynell J, Fagerlund R, Roussel P, Hernandez-Verdun D, Julkunen I (2012) Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin. Virol J 9:167

    CAS  Article  Google Scholar 

  18. Otey CA, Carpen O (2004) Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton 58(2):104–111

    CAS  Article  Google Scholar 

  19. Honda K, Yamada T, Endo R, Ino Y, Hirohashi S (1998) Actinin-4, a novel actin-bundling protein associated with cell motility and invasion. J Cell Biol 140(6):1383–1393

    CAS  Article  Google Scholar 

  20. Ylanne J, Scheffzek K, Young P, Saraste M (2001) Crystal structure of the alpha-actinin rod: four spectrin repeats forming a thight dimer. Cell Mol Biol Lett 6(2):234

    PubMed  Google Scholar 

  21. Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A (2008) Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 10(9):1039–1050

    CAS  Article  Google Scholar 

  22. Desai S, Barai A, Bukhari AB, De A (1865) Sen S (2017) α-actinin-4 confers radioresistance coupled invasiveness in breast cancer cells through AKT pathway. Biochim Biophys Acta 1:196–208

    Google Scholar 

  23. Gao Y, Li G, Sun L, He Y, Li X, Sun Z, Wang J, Jiang Y, Shi J (2015) ACTN4 and the pathways associated with cell motility and adhesion contribute to the process of lung cancer metastasis to the brain. BMC Cancer 15:277

    Article  Google Scholar 

  24. Hirokazu S, Nami M, Hideki U, Kazufumi H (2018) Measurement of copy number of ACTN4 to optimize the therapeutic strategy for locally advanced pancreatic cancer. Pancreatology 18(6):624–629

    Article  Google Scholar 

  25. Kakuya T, Mori T, Yoshimoto S, Watabe Y, Miura N, Shoji H, Onidani K, Shibahara T, Honda K (2017) Prognostic significance of gene amplification of ACTN4 in stage I and II oral tongue cancer. Int J Oral Maxillofac Surg 46(8):968–976

    CAS  Article  Google Scholar 

  26. Jing L, Min H (2015) The expression of α-actinin 4 in cervical cancer and the correlation with high-risk human papilloma virus infection (The expression of α-actinin 4 in cervical cancer and the correlation with high-risk human papilloma virus infection). Obstetr Gynecol Genetics (Electron Edn) 5(1):28–33

    Google Scholar 

  27. Sharma S, Mayank AK, Nailwal H, Tripathi S, Patel JR, Bowzard JB, Gaur P, Donis RO, Katz JM, Cox NJ, Lal RB, Farooqi H, Sambhara S, Lal SK (2014) Influenza A viral nucleoprotein interacts with cytoskeleton scaffolding protein alpha-actinin-4 for viral replication. FEBS J 281(13):2899–2914

    CAS  Article  Google Scholar 

  28. Lan S, Wang H, Jiang H, Mao H, Liu X, Zhang X, Hu Y, Xiang L, Yuan Z (2003) Direct interaction between α-actinin and hepatitis C virus NS5B. FEBS Lett 554(3):289–294

    CAS  Article  Google Scholar 

  29. Mueller SM, Jung R, Weiler S, Lang SM (2004) Vpx proteins of SIVmac239 and HIV-2ROD interact with the cytoskeletal protein α-actinin 1. J Gen Virol 85(11):3291–3303

    CAS  Article  Google Scholar 

  30. Yin W, Li W, Li Q, Liu Y, Liu J, Ren M, Ma Y, Zhang Z, Zhang X, Wu Y (2020) Real-time imaging of individual virion-triggered cortical actin dynamics for human immunodeficiency virus entry into resting CD4 T cells. Nanoscale 12(1):115–129

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsheng Liu.

Additional information

Edited by Simon D. Scott.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 173 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Wang, R., Wang, F. et al. Interaction of influenza A virus NS1 and cytoskeleton scaffolding protein α-actinin 4. Virus Genes 58, 15–22 (2022). https://doi.org/10.1007/s11262-021-01876-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-021-01876-3

Keywords

  • Avian influenza virus
  • NS1
  • α-Actinin 4
  • Interaction
  • Pull-down