Skip to main content
Log in

Complete genome sequences of novel Berlinvirus and novel Certrevirus lytic for Pectobacterium sp. causing soft rot and black leg disease of potato

  • Short Report
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Two novel dsDNA bacteriophages named Pectobacterium virus CB251 (PcCB251) and Pectobacterium virus CB7V (PcCB7V) targeting plant pathogen Pectobacterium parmentieri have been isolated and sequenced. The PcCB251 genome consists of 40,557 bp with G+C content of 48.6% and contains 47 predicted genes on a single strand. The phage is classified in genus Berlinvirus, family Autographiviridae. The PcCB7V phage has a circular dsDNA genome of 146,054 bp with G+C content of 50.4% and contains 269 predicted protein genes on both strands and 13 tRNA genes. The PcCB7V phage can be classified in genus Certrevirus, subfamily Vequintavirinae. Both novel bacteriophages have narrow host ranges, but they extend the list of candidates for phage-based control of pectolytic bacteria causing soft rot disease of potato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Khayi S, Cigna J, Chong TM, Quetu-Laurent A, Chan KG, Hélias V, Faure D (2016) Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int J Syst Evol Microbiol 66:5379–5383. https://doi.org/10.1099/ijsem.0.001524

    Article  CAS  PubMed  Google Scholar 

  2. CABI (2019) Pectobacterium parmentieri (black leg disease of potato). Invasive species compendium. https://www.cabi.org/isc/datasheet/48069201 Accessed Jan 2021

  3. Czajkowski R, Pérombelon MCM, van Veen JA, van der Wolf JM (2011) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60:999–1013. https://doi.org/10.1111/j.1365-3059.2011.02470.x

    Article  Google Scholar 

  4. Adriaenssens EM, Van Vaerenbergh J, Vandenheuvel D, Dunon V, Ceyssens PJ, De Proft M, Kropinski AM, Noben JP, Maes M, Lavigne R (2012) T4-related bacteriophage LIME stone isolates for the kontrol of soft rot on potato caused by ‘Dickeya solani’. PLoS ONE 7:e33227. https://doi.org/10.1371/journal.pone.0033227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zaczek-Moczydłowska MA, Fleming CC, Young GK, Campbell K, O´Hanlon R, (2019) Pectobacterium and Dickeya species detected in vegetables in Northern Ireland. Eur J Plant Pathol 154:635–647. https://doi.org/10.1007/s10658-019-01687-1

    Article  CAS  Google Scholar 

  6. Anonymous (2021) https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=10239 Viral genome browser Accessed at Jan. 21, 2021

  7. Carstens AB, Djurhuus AM, Kot W, Hansen LH (2019) A novel six-phage cocktail reduces Pectobacterium atrosepticum soft rot infection in potato tubers under simulated storage conditions. FEMS Microbiol Lett 366:fnz101. https://doi.org/10.1093/femsle/fnz101

    Article  CAS  PubMed  Google Scholar 

  8. Muturi P, Yu J, Maina AN, Kariuki S, Mwaura FB, Wei H (2019) Bacteriophages isolated in China for the control of Pectobacterium carotovorum causing potato soft rot in Kenya. Virol Sin 34(3):287–294. https://doi.org/10.1007/s12250-019-00091-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Voronina MV, Bugaeva EN, Vasiliev DM, Kabanova AP, Barannik AP, Shneider MM, Kulikov EE, Korzhenkov AA, Toschakov SV, Ignatov AN, Miroshnikov KA (2019) Characterization of Pectobacterium carotovorum subsp. carotovorum bacteriophage PP16 prospective for biocontrol of potato soft rot. Microbiology 88:451–460. https://doi.org/10.1134/S0026261719040118

    Article  CAS  Google Scholar 

  10. Lim JA, Jee S, Lee DH, Roh E, Jung K, Oh C, Heu S (2013) Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J Microbiol Biotechnol 23:1147–1153. https://doi.org/10.4014/jmb.1304.04001

    Article  PubMed  Google Scholar 

  11. Petrzik K, Vacek J, Brázdová S, Ševčík R, Koloniuk I (2021) Diversity of limestone bacteriophages infecting Dickeya solani isolated in the Czech Republic. Arch Virol 166:1171–1175. https://doi.org/10.1007/s00705-020-04926-7

    Article  CAS  PubMed  Google Scholar 

  12. Kropinski AM (2018) Practical advice on the one-step growth curve. In: Clokie MRJ, Kropinski AM, Lavigne R (eds) Bacteriophages methods and protocols, vol III. Humana Press, New York, pp 41–48

    Chapter  Google Scholar 

  13. Chen M, Xu J, Yao H, Lu C, Zhang W (2016) Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli. Gene 582:47–58. https://doi.org/10.1016/j.gene.2016.01.049

    Article  CAS  PubMed  Google Scholar 

  14. Buttimer C, Lynch C, Hendrix H, Neve H, Noben J-P, Lavigne R, Coffey A (2020) Isolation and characterization of Pectobacterium phage vB_PatM_CB7: new insight into the genus Certrevirus. Antibiotics 9:352. https://doi.org/10.3390/antibiotics9060352

    Article  CAS  PubMed Central  Google Scholar 

  15. Lee HJ, Kim WI, Kwon YC, Cha KE, Kim M, Myung H (2016) A newly isolated bacteriophage, PBES 02, infecting Cronobacter sazakii. J Microbiol Biotechnol 26(9):1629–1335. https://doi.org/10.4014/jmb.1605.05020

    Article  CAS  PubMed  Google Scholar 

  16. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, Stevens R, Vonstein V, Wattam AR, Xia F (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol S0022–2836:30587–30589. https://doi.org/10.1016/j.jmb.2017.12.007

    Article  CAS  Google Scholar 

  18. Krumsiek J, Arnold R, Rattei T (2007) Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23(8):1026–1028. https://doi.org/10.1093/bioinformatics/btm039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work was supported by project QK1910028 from the Ministry of Agriculture of the Czech Republic and by institutional funding RVO60077344.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Karel Petrzik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Ethical approval

As only soil and plant samples were used, no approval from the ethical committee was needed.

Informed consent

This work does not contain any animal or human participants.

Additional information

Edited by Andrew Millard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrzik, K., Kmoch, M., Brázdová, S. et al. Complete genome sequences of novel Berlinvirus and novel Certrevirus lytic for Pectobacterium sp. causing soft rot and black leg disease of potato. Virus Genes 57, 302–305 (2021). https://doi.org/10.1007/s11262-021-01838-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-021-01838-9

Keywords

Navigation