Skip to main content

Advertisement

Log in

Field vole-associated Traemmersee hantavirus from Germany represents a novel hantavirus species

  • Short Report
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Vole-associated hantaviruses occur in the Old and New World. Tula orthohantavirus (TULV) is widely distributed throughout the European continent in its reservoir, the common vole (Microtus arvalis), but the virus was also frequently detected in field voles (Microtus agrestis) and other vole species. TULV and common voles are absent from Great Britain. However, field voles there harbor Tatenale and Kielder hantaviruses. Here we screened 126 field voles and 13 common voles from Brandenburg, Germany, for hantavirus infections. One common vole and four field voles were anti-TULV antibody and/or TULV RNA positive. In one additional, seropositive field vole a novel hantavirus sequence was detected. The partial S and L segment nucleotide sequences were only 61.1% and 75.6% identical to sympatrically occurring TULV sequences, but showed highest similarity of approximately 80% to British Tatenale and Kielder hantaviruses. Subsequent determination of the entire nucleocapsid (N), glycoprotein (GPC), and RNA-dependent RNA polymerase encoding sequences and determination of the pairwise evolutionary distance (PED) value for the concatenated N and GPC amino acid sequences confirmed a novel orthohantavirus species, tentatively named Traemmersee orthohantavirus. The identification of this novel hantavirus in a field vole from eastern Germany underlines the necessity of a large-scale, broad geographical hantavirus screening of voles to understand evolutionary processes of virus–host associations and host switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Forbes KM, Sironen T, Plyusnin A (2018) Hantavirus maintenance and transmission in reservoir host populations. Curr Opin Virol 28:1–6. https://doi.org/10.1016/j.coviro.2017.09.003

    Article  PubMed  Google Scholar 

  2. Jiang H, Zheng X, Wang L, Du H, Wang P, Bai X (2017) Hantavirus infection: a global zoonotic challenge. Virol Sinica 32(1):32–43. https://doi.org/10.1007/s12250-016-3899-x

    Article  Google Scholar 

  3. Johnson KM (2001) Hantaviruses: history and overview. Curr Top Microbiol Immunol 256:1–14

    CAS  PubMed  Google Scholar 

  4. Elliott RM (1990) Molecular biology of the Bunyaviridae. J Gen Virol 71(3):501–522

    Article  CAS  PubMed  Google Scholar 

  5. Vera-Otarola J, Solis L, Soto-Rifo R, Ricci EP, Pino K, Tischler ND, Ohlmann T, Darlix JL, Lopez-Lastra M (2012) The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism. J Virol 86(4):2176–2187. https://doi.org/10.1128/jvi.06223-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song W, Torrez-Martinez N, Irwin W, Harrison FJ, Davis R, Ascher M, Jay M, Hjelle B (1995) Isla Vista virus: a genetically novel hantavirus of the California vole Microtus californicus. J Gen Virol 76(Pt 12):3195–3199. https://doi.org/10.1099/0022-1317-76-12-3195

    Article  CAS  PubMed  Google Scholar 

  7. Turell MJ, Korch GW, Rossi CA, Sesline D, Enge BA, Dondero DV, Jay M, Ludwig GV, Li D, Schmaljohn CS et al (1995) Short report: prevalence of hantavirus infection in rodents associated with two fatal human infections in California. Am J Trop Med Hyg 52(2):180–182. https://doi.org/10.4269/ajtmh.1995.52.180

    Article  CAS  PubMed  Google Scholar 

  8. Rowe JE, St Jeor SC, Riolo J, Otteson EW, Monroe MC, Henderson WW, Ksiazek TG, Rollin PE, Nichol ST (1995) Coexistence of several novel hantaviruses in rodents indigenous to North America. Virology 213(1):122–130. https://doi.org/10.1006/viro.1995.1552

    Article  CAS  PubMed  Google Scholar 

  9. Hjelle B, Jenison SA, Goade DE, Green WB, Feddersen RM, Scott AA (1995) Hantaviruses: clinical, microbiologic, and epidemiologic aspects. Crit Rev Clin Lab Sci 32(5–6):469–508. https://doi.org/10.3109/10408369509082592

    Article  CAS  PubMed  Google Scholar 

  10. Lee PW, Amyx HL, Yanagihara R, Gajdusek DC, Goldgaber D, Gibbs CJ Jr (1985) Partial characterization of Prospect Hill virus isolated from meadow voles in the United States. J Infect Dis 152(4):826–829

    Article  CAS  PubMed  Google Scholar 

  11. Maes P, Alkhovsky SV, Bào Y, Beer M, Birkhead M, Briese T, Buchmeier MJ, Calisher CH, Charrel RN, Choi IR (2018) Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Arch Virol 163(8):2295–2310

    Article  CAS  PubMed  Google Scholar 

  12. Milholland MT, Castro-Arellano I, Suzan G, Garcia-Pena GE, Lee TE Jr, Rohde RE, Alonso Aguirre A, Mills JN (2018) Global diversity and distribution of hantaviruses and their hosts. EcoHealth 15(1):163–208. https://doi.org/10.1007/s10393-017-1305-2

    Article  PubMed  Google Scholar 

  13. Zou Y, Wang JB, Gaowa HS, Yao LS, Hu GW, Li MH, Chen HX, Plyusnin A, Shao R, Zhang YZ (2008) Isolation and genetic characterization of hantaviruses carried by Microtus voles in China. J Med Virol 80(4):680–688. https://doi.org/10.1002/jmv.21119

    Article  CAS  PubMed  Google Scholar 

  14. Polat C, Ergunay K, Irmak S, Erdin M, Brinkmann A, Cetintas O, Cogal M, Sozen M, Matur F, Nitsche A, Oktem IMA (2018) A novel genetic lineage of Tula orthohantavirus in Altai voles (Microtus obscurus) from Turkey. Infect Genet Evol 67:150–158. https://doi.org/10.1016/j.meegid.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Plyusnin A, Vapalahti O, Lankinen H, Lehvaslaiho H, Apekina N, Myasnikov Y, Kallio-Kokko H, Henttonen H, Lundkvist A, Brummer-Korvenkontio M et al (1994) Tula virus: a newly detected hantavirus carried by European common voles. J Virol 68(12):7833–7839

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Artois M, Cochez C, Van Mele R, Heyman P (2007) Genetic evidence of Puumala and Tula Hantaviruses in rodents in the Jura region, France—preliminary results. Eur Surveill 12(6):E070628

    Google Scholar 

  17. Schmidt-Chanasit J, Essbauer S, Petraityte R, Yoshimatsu K, Tackmann K, Conraths FJ, Sasnauskas K, Arikawa J, Thomas A, Pfeffer M, Scharninghausen JJ, Splettstoesser W, Wenk M, Heckel G, Ulrich RG (2010) Extensive host sharing of central European Tula virus. J Virol 84(1):459–474. https://doi.org/10.1128/jvi.01226-09

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt S, Saxenhofer M, Drewes S, Schlegel M, Wanka KM, Frank R, Klimpel S, von Blanckenhagen F, Maaz D, Herden C, Freise J, Wolf R, Stubbe M, Borkenhagen P, Ansorge H, Eccard JA, Lang J, Jourdain E, Jacob J, Marianneau P, Heckel G, Ulrich RG (2016) High genetic structuring of Tula hantavirus. Arch Virol 161(5):1135–1149. https://doi.org/10.1007/s00705-016-2762-6

    Article  CAS  PubMed  Google Scholar 

  19. Saxenhofer M, Schmidt S, Ulrich RG, Heckel G (2019) Secondary contact between diverged host lineages entails ecological speciation in a European hantavirus. PLoS Biol 17(2):e3000142. https://doi.org/10.1371/journal.pbio.3000142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saxenhofer M, Weber de Melo V, Ulrich RG, Heckel G (2017) Revised time scales of RNA virus evolution based on spatial information. Proc Biol Sci. https://doi.org/10.1098/rspb.2017.0857

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tkachenko EA, Witkowski PT, Radosa L, Dzagurova TK, Okulova NM, Yunicheva YV, Vasilenko L, Morozov VG, Malkin GA, Kruger DH, Klempa B (2015) Adler hantavirus, a new genetic variant of Tula virus identified in Major's pine voles (Microtus majori) sampled in southern European Russia. Infect Genet Evol 29:156–163. https://doi.org/10.1016/j.meegid.2014.11.018

    Article  PubMed  Google Scholar 

  22. Schlegel M, Kindler E, Essbauer SS, Wolf R, Thiel J, Groschup MH, Heckel G, Oehme RM, Ulrich RG (2012) Tula virus infections in the Eurasian water vole in Central Europe. Vector Borne Zoonotic Dis 12(6):503–513. https://doi.org/10.1089/vbz.2011.0784

    Article  PubMed  Google Scholar 

  23. Pounder KC, Begon M, Sironen T, Henttonen H, Watts PC, Voutilainen L, Vapalahti O, Klempa B, Fooks AR, McElhinney LM (2013) Novel hantavirus in wildlife, United Kingdom. Emerg Infect Dis 19(4):673–675. https://doi.org/10.3201/eid1904.121057

    Article  PubMed  PubMed Central  Google Scholar 

  24. Thomason AG, Begon M, Bradley JE, Paterson S, Jackson JA (2017) Endemic Hantavirus in field voles, Northern England. Emerg Infect Dis 23(6):1033–1035. https://doi.org/10.3201/eid2306.161607

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fischer S, Mayer-Scholl A, Imholt C, Spierling NG, Heuser E, Schmidt S, Reil D, Rosenfeld UM, Jacob J, Nockler K, Ulrich RG (2018) Leptospira genomospecies and sequence type prevalence in small mammal populations in Germany. Vector Borne Zoonotic Dis 25:256. https://doi.org/10.1089/vbz.2017.2140

    Article  Google Scholar 

  26. Jeske K, Imholt C, Jacob J, Spakova P, Petraitytė-Burneikienė R, Ulrich RG (unpublished data)

  27. Razanskiene A, Schmidt J, Geldmacher A, Ritzi A, Niedrig M, Lundkvist A, Kruger DH, Meisel H, Sasnauskas K, Ulrich R (2004) High yields of stable and highly pure nucleocapsid proteins of different hantaviruses can be generated in the yeast Saccharomyces cerevisiae. J Biotechnol 111(3):319–333. https://doi.org/10.1016/j.jbiotec.2004.04.010

    Article  CAS  PubMed  Google Scholar 

  28. Mertens M, Kindler E, Emmerich P, Esser J, Wagner-Wiening C, Wolfel R, Petraityte-Burneikiene R, Schmidt-Chanasit J, Zvirbliene A, Groschup MH, Dobler G, Pfeffer M, Heckel G, Ulrich RG, Essbauer SS (2011) Phylogenetic analysis of Puumala virus subtype Bavaria, characterization and diagnostic use of its recombinant nucleocapsid protein. Virus Genes 43(2):177–191. https://doi.org/10.1007/s11262-011-0620-x

    Article  CAS  PubMed  Google Scholar 

  29. Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, Denys C, Koivogui L, ter Meulen J, Kruger DH (2006) Hantavirus in African wood mouse, Guinea. Emerg Infect Dis 12(5):838–840. https://doi.org/10.3201/eid1205.051487

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lischer HE, Excoffier L, Heckel G (2014) Ignoring heterozygous sites biases phylogenomic estimates of divergence times: implications for the evolutionary history of Microtus voles. Mol Biol Evol 31(4):817–831. https://doi.org/10.1093/molbev/mst271

    Article  CAS  PubMed  Google Scholar 

  31. ICTV (2018). https://talk.ictvonline.org/files/ictv_official_taxonomy_updates_since_the_8th_report/m/animal-dsrna-and-ssrna--viruses/8066. Accessed 13 July 2019

  32. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1(1):vev003. https://doi.org/10.1093/ve/vev003

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC (1999) Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73(1):152–160

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Herman JS, McDevitt AD, Kawalko A, Jaarola M, Wojcik JM, Searle JB (2014) Land-bridge calibration of molecular clocks and the post-glacial colonization of Scandinavia by the Eurasian field vole Microtus agrestis. PLoS ONE 9(8):e103949. https://doi.org/10.1371/journal.pone.0103949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herman JS, Searle JB (2011) Post-glacial partitioning of mitochondrial genetic variation in the field vole. Proc Biol Sci 278(1724):3601–3607. https://doi.org/10.1098/rspb.2011.0321

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kotlik P, Markova S, Konczal M, Babik W, Searle JB (2018) Genomics of end-Pleistocene population replacement in a small mammal. Proc Biol Sci. https://doi.org/10.1098/rspb.2017.2624

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: 2010 gateway computing environments workshop (GCE), IEEE, pp 1–8

  38. Hall T (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci 2(1):60–61

    Google Scholar 

Download references

Acknowledgements

The authors thank Wolfgang Michelsson, Joachim Schmelz, and Steffen Pauly for supporting the collection of voles, Dörte Kaufmann, Maysaa Dafalla, Stefan Fischer, Florian Binder, Robin Brandt, Patrick Slowikowski, Elisa Heuser and Lisa Schlupeck for dissection, and Patrick Wysocki for generating the map in Fig. 1.

Funding

The generation of the novel TULV antigen was funded in part by the Federal Environment Agency (UBA) within the Environment Research Plan of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) (Grant No.3714 67 407 0). GH was supported by the Swiss National Science Foundation (31003A_176209).

Author information

Authors and Affiliations

Authors

Contributions

RGU and GH designed the study. MW collected all voles. KJ performed all molecular and serological investigations including sequence determination and analyses and contributed to the generation of the N antigen of TULV strain Thuringia. MH performed RDP4 and SimPlot analyses. AS and RP contributed to the generation of both TULV N antigens. SD, RR, and GH supervised the sequence analyses. RR performed the PED determination. KJ, GH, and RGU wrote the manuscript draft. All authors contributed to the final version of the manuscript and approved it.

Corresponding author

Correspondence to Rainer G. Ulrich.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The collection of voles was performed by the local forestry institutions during the vole monitoring as part of their pest control measures.

Additional information

Communicated by Detlev H. Kruger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeske, K., Hiltbrunner, M., Drewes, S. et al. Field vole-associated Traemmersee hantavirus from Germany represents a novel hantavirus species. Virus Genes 55, 848–853 (2019). https://doi.org/10.1007/s11262-019-01706-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-019-01706-7

Keywords

Navigation