Advertisement

Virus Genes

pp 1–4 | Cite as

A novel parvovirus, Roe deer copiparvovirus, identified in Ixodes ricinus ticks

  • Annick Linden
  • Gautier Gilliaux
  • Julien Paternostre
  • Emna Benzarti
  • Jose Felipe Rivas
  • Daniel Desmecht
  • Mutien GariglianyEmail author
Short Report

Abstract

The family Parvoviridae contains diverse viruses that are capable of infecting a wide range of hosts. In this study, metagenomic sequencing of Ixodes ricinus ticks harvested in 2016 on red deer (Cervus elaphus) and European roe deer (Capreolus capreolus) in Belgium detected a new 6296-bp parvoviral genome. Phylogenetic and sequence analyses showed the new virus belongs to a new species within the Copiparvovirus genus. PCR screening of 4 pools of 10 serum samples from both deer species identified the new copiparvovirus DNA only in roe deer sera. Together, these results are the first evidence of a copiparvovirus in a deer species. Besides its potential pathogenicity to roe deers, the detection of this new virus in ticks raises questions about the possible transmission of parvoviruses by ticks. This report further increases the current knowledge on the evolution and diversity of copiparvoviruses.

Keywords

Ticks Copiparvovirus European roe deer 

Notes

Acknowledgements

The authors thank Mathieu Franssen for excellent technical assistance. This work was partly supported by a grant from the Public Service of Wallonia and by the Research Council in Life Sciences of the University of Liège.

Author contributions

Conceived the study: AL and MG. Performed research: GG and AL. Analyzed data: EB, JFR and MG. Wrote the paper: AL, EB, JFR, DD and MG.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Statement on the welfare of humans/animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent concerns are not applicable.

References

  1. 1.
    Li L, Giannitti F, Low J, Keyes C, Ullmann LS, Deng X, Aleman M, Pesavento PA, Pusterla N, Delwart E (2015) Exploring the virome of diseased horses. J Gen Virol 96:2721–2733.  https://doi.org/10.1099/vir.0.000199 CrossRefGoogle Scholar
  2. 2.
    Phan TG, Gulland F, Simeone C, Deng X, Delwart E (2016) Sesavirus: prototype of a new parvovirus genus in feces of a sea lion. Virus Genes 50:134–136.  https://doi.org/10.1002/stem.1868.Human CrossRefGoogle Scholar
  3. 3.
    Divers TJ, Tennant BC, Kumar A, McDonough S, Cullen JM et al (2018) A new parvovirus associated with serum hepatitis in horses following inoculation of a common equine biological product. Emerg Infect Dis 24:303–310.  https://doi.org/10.3201/eid2402.171031 CrossRefGoogle Scholar
  4. 4.
    Földvári G (2016) Life cycle and ecology of Ixodes ricinus: the roots of public health importance. In: Braks AH, van Wieren SE, Takken W, Sprong H (eds) Ecology and prevention of Lyme borreliosis, vol 4. Wageningen Academic Publishers, Wageningen, pp 31–40CrossRefGoogle Scholar
  5. 5.
    Simmonds P, Adams MJ, Benk M, Breitbart M, Brister JR et al (2017) Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol 15:161–168.  https://doi.org/10.1038/nrmicro.2016.177 CrossRefGoogle Scholar
  6. 6.
    Garigliany M, Linden A, Gilliau G, Levy E, Sarlet M, Franssen M, Benzarti E, Derouaux A, Francis F, Desmecht D (2017) Usutu virus, Belgium, 2016. Infect Genet Evol 48:116–119.  https://doi.org/10.1016/j.meegid.2016.12.023 CrossRefGoogle Scholar
  7. 7.
    Garigliany M, Gilliaux G, Jolly S, Casanova T, Bayrou C et al (2016) Feline panleukopenia virus in cerebral neurons of young and adult cats. BMC Vet Res 12:28.  https://doi.org/10.1186/s12917-016-0657-0 CrossRefGoogle Scholar
  8. 8.
    Garigliany M, Taminiau B, El Agrebi N, Cadar D, Gilliaux G et al (2017) Moku virus in invasive Asian Hornets, Belgium, 2016. Emerg Infect Dis 23:2109–2112.  https://doi.org/10.3201/eid2312.171080 CrossRefGoogle Scholar
  9. 9.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  10. 10.
    Ni J, Qiao C, Han X, Han T, Kang W et al (2014) Identification and genomic characterization of a novel porcine parvovirus (PPV6) in China. Virol J 11:203.  https://doi.org/10.1186/s12985-014-0203-2 CrossRefGoogle Scholar
  11. 11.
    Lukashov VV, Goudsmit AJ (2001) Evolutionary relationships among parvoviruses: virus–host coevolution among autonomous primate parvoviruses and links between adeno-associated and avian parvoviruses. J Virol 75:2729–2740.  https://doi.org/10.1128/JVI.75.6.2729-2740.2001 CrossRefGoogle Scholar
  12. 12.
    Cibulski SP, Teixeira TF, dos Santos HF, de Sales Lima FE, Scheffer CM et al (2016) Ungulate copiparvovirus 1 (bovine parvovirus 2): characterization of a new genotype and associated viremia in different bovine age groups. Virus Genes 52:134–137.  https://doi.org/10.1007/s11262-015-1266-x CrossRefGoogle Scholar
  13. 13.
    Ng TFF, Kondov NO, Deng X, Van Eenennaam A, Neibergs HL, Delwart E (2015) A metagenomics and case–control study to identify viruses associated with bovine respiratory disease. J Virol 89:5340–5349.  https://doi.org/10.1128/JVI.00064-15 CrossRefGoogle Scholar
  14. 14.
    Mori H, Tanaka T, Mochizuki M (2015) The widely distributed hard tick, Haemaphysalis longicornis, can retain canine parvovirus, but not be infected in laboratory condition. J Vet Med Sci 77:405–411.  https://doi.org/10.1292/jvms.14-0199 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Annick Linden
    • 1
  • Gautier Gilliaux
    • 1
  • Julien Paternostre
    • 1
  • Emna Benzarti
    • 1
  • Jose Felipe Rivas
    • 1
  • Daniel Desmecht
    • 1
  • Mutien Garigliany
    • 1
    Email author
  1. 1.Faculty of Veterinary Medicine, FARAH Research CenterUniversity of LiègeLiègeBelgium

Personalised recommendations