Recombinant HCV NS3 and NS5B enzymes exhibit multiple posttranslational modifications for potential regulation

Abstract

Posttranslational modification (PTM) of proteins is critical to modulate protein function and to improve the functional diversity of polypeptides. In this report, we have analyzed the PTM of both hepatitis C virus NS3 and NS5B enzyme proteins, upon their individual expression in insect cells under the baculovirus expression system. Using mass spectrometry, we present evidence that these recombinant proteins exhibit diverse covalent modifications on certain amino acid side chains, such as phosphorylation, ubiquitination, and acetylation. Although the functional implications of these PTM must be further addressed, these data may prove useful toward the understanding of the complex regulation of these key viral enzymes and to uncover novel potential targets for antiviral design.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Tellinghuisen T, Evans M, Hahn T, You S, Rice C (2007) Studying hepatitis C virus: making the best of a bad virus. J Virol 81:8853–8867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Paul D, Madan V, Bartenschlager R (2014) Hepatitis C virus RNA replication and assembly: living on the fat of the land. Cell Host Microbe 16(5):569–579

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Villanueva RA, Rouille Y, Dubuisson J (2005) Interactions between virus proteins and host cell membranes during the viral life cycle. Int Rev Cytol 245:171–244

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Wang H, Tai AW (2016) Mechanisms of cellular membrane reorganization to support hepatitis C virus replication. Viruses 8(5):E142

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Yao N, Reichert P, Taremi S, Prosise W, Weber P (1999) Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure 7:1353–1363

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Wölk B, Sansonno D, Kräusslich H, Dammacco F, Rice C, Blum H, Moradpour D (2000) Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J Virol 74:2293–2304

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Frick DN, Rypma RS, Lam AMI, Gu B (2004) The nonstructural protein 3 protease/helicase requires an intact protease domain to unwind duplex RNA efficiently. J Biol Chem 279(2):1269–1280

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Pang PS, Jankowsky E, Planet PJ, Pyle AM (2002) The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J 21(5):1168–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kolykhalov A, Mihalik K, Feinstone S, Rice C (2000) Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. J Virol 74:2046–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Lam A, Frick D (2006) Hepatitis C virus subgenomic replicon requires an active NS3 RNA helicase. J Virol 80:404–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bressanelli S, Tomei L, Roussel A, Incitti I, Vitale R, Mathieu M, Francesco RD, Rey F (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci USA 96:13034–13039

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Sesmero E, Thorpe IF (2015) Using the hepatitis C virus RNA-dependent RNA polymerase as a model to understand viral polymerase structure, function and dynamics. Viruses 7(7):3974–3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bressanelli S, Tomei L, Rey F, Francesco RD (2002) Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol 76:3482–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Biswal B, Cherney M, Wang M, Chan L, Yannopoulos C, Bilimoria D, Nicolas O, Bedard J, James M (2005) Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors. J Biol Chem 280:18202–18210

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Tomei L, Vitale R, Incitti I, Serafini S, Altamura S, Vitelli A, Francesco RD (2000) Biochemical characterization of a hepatitis C virus RNA-dependent RNA polymerase mutant lacking the C-terminal hydrophobic sequence. J Gen Virol 81:759–767

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Schmidt-Mende J, Bieck E, Hugle T, Penin F, Rice C, Blum H, Moradpour D (2001) Determinants for membrane association of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 276:44052–44063

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Shih C, Chen C, Chen S, Lee Y (1995) Modulation of the trans-suppression activity of hepatitis C virus core protein by phosphorylation. J Virol 69:1160–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Franck N, Seyec JL, Guguen-Guillouzo C, Erdtmann L (2005) Hepatitis C virus NS2 protein is phosphorylated by the protein kinase CK2 and targeted for degradation to the proteasome. J Virol 79:2700–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hundt J, Li Z, Liu Q (2013) Post-translational modifications of hepatitis C viral proteins and their biological significance. World J Gastroenterol 19(47):8929–8939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Rho J, Choi S, Seong Y, Choi J, Im D (2001) The arginine-1493 residue in QRRGRTGR1493G motif IV of the hepatitis C virus NS3 helicase domain is essential for NS3 protein methylation by the protein arginine methyltransferase 1. J Virol 75:8031–8044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Liefhebber J, Hensbergen P, Deelder A, Spaan W, Leeuwen H (2010) Characterization of hepatitis C virus NS3 modifications in the context of replication. J Gen Virol 91:1013–1018

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Yu G, Lee K, Gao L, Lai M (2006) Palmitoylation and polymerization of hepatitis C virus NS4B protein. J Virol 80:6013–6023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Huang Y, Staschke K, Francesco RD, Tan S (2007) Phosphorylation of hepatitis C virus NS5A nonstructural protein: a new paradigm for phosphorylation-dependent viral RNA replication? Virology 364:1–9

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Ross-Thriepland D, Harris M (2015) Hepatitis C virus NS5A: enigmatic but still promiscuous 10 years on! J Gen Virol 96(4):727–738

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Hwang S, Park K, Kim Y, Sung Y, Lai M (1997) Hepatitis C virus NS5B protein is a membrane-associated phosphoprotein with a predominantly perinuclear localization. Virology 227:439–446

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Han SH, Kim SJ, Kim EJ, Kim TE, Moon JS, Kim GW, Lee SH, Cho K, Yoo JS, Son WS, Rhee JK, Han SH, Oh JW (2014) Phosphorylation of hepatitis C virus RNA polymerases ser29 and ser42 by protein kinase C related kinase 2 regulates viral RNA replication. J Virol 88(19):11240–11252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kim S, Kim J, Kim Y, Lim H, Oh J (2004) Protein kinase C-related kinase 2 regulates hepatitis C virus RNA polymerase function by phosphorylation. J Biol Chem 279:50031–50041

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Hernández S, Figueroa D, Correa S, Díaz A, Aguayo D, Villanueva RA (2015) Phosphorylation at the N-terminal finger subdomain of a viral RNA-dependent RNA polymerase. Biochem Biophys Res Commun 466(1):21–27

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Jakubiec A, Jupin I (2007) Regulation of positive-strand RNA virus replication: the emerging role of phosphorylation. Virus Res 129:73–79

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Kuang W, Lin Y, Jean F, Huang Y, Tai C, Chen D, Chen P, Hwang L (2004) Hepatitis C virus NS3 RNA helicase activity is modulated by the two domains of NS3 and NS4A. Biochem Biophys Res Commun 317:211–217

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Welbourn S, Pause A (2007) The hepatitis C virus NS2/3 protease. Curr Issues Mol Biol 9:63–69

    CAS  PubMed  Google Scholar 

  32. 32.

    Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Fiore PD, Polo S, Hofmann K (2003) When ubiquitin meets ubiquitin receptors: a signalling connection. Nat Rev Mol Cell Biol 4:491–497

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Schnell J, Hicke L (2003) Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 278:35857–35860

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Leestemaker Y, Ovaa H (2017) Tools to investigate the ubiquitin proteasome system. Drug Discov Today Technol 26:25–31

    Article  PubMed  Google Scholar 

  37. 37.

    Dwane L, Gallagher WM, Ní Chonghaile T, O’Connor DP (2017) The emerging role of non-traditional ubiquitination in oncogenic pathways. J Biol Chem 292(9):3543–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Haqshenas G (2012) The conserved lysine 151 of HCV NS5B modulates viral genome replication and infectious virus production. J Viral Hepat 19:862–866

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Spange S, Wagner T, Heinzel T, Krämer O (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41:185–198

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Buuh ZY, Lyu Z, Wang RE (2018) Interrogating the roles of post-translational modifications of non-histone proteins. J Med Chem 61(8):3239–3252

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Spange S, Wagner T, Heinzel T, Krämer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41(1):185–198

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Reissner K, Aswad D (2003) Deamidation and isoaspartate formation in proteins: unwanted alterations or surreptitious signals? Cell Mol Life Sci 60:1281–1295

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Legrand P, Rioux V (2010) The complex and important cellular and metabolic functions of saturated fatty acids. Lipids 45:941–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Aicart-Ramos C, Valero R, Rodriguez-Crespo I (2011) Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta 1808:2981–2994

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Nishi Y, Yoh J, Hiejima H, Kojima M (2011) Structures and molecular forms of the ghrelin-family peptides. Peptides 32:2175–2182

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Schwandt SE1, Peddu SC, Riley LG (2010) Differential roles for octanoylated and decanoylated ghrelins in regulating appetite and metabolism. Int J Pept 2010:275804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Riley LG (2013) Different forms of ghrelin exhibit distinct biological roles in tilapia. Front Endocrinol (Lausanne) 4:118

    Article  Google Scholar 

  48. 48.

    Khatib N, Gaidhane S, Gaidhane AM, Khatib M, Simkhada P, Gode D, Zahiruddin QS (2014) Ghrelin: ghrelin as a regulatory peptide in growth hormone secretion. J Clin Diagn Res 8(8):MC13–M7

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kapadia S, Chisari F (2005) Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci USA 102:2561–2566

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Kost T, Condreay J, Jarvis D (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kollewe C, Vilcinskas A (2013) Production of recombinant proteins in insect cells. Am J Biochem Biotechnol 9:255–271

    Article  CAS  Google Scholar 

  52. 52.

    van Oers M, Pijlman G, Vlak J (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96:6–23

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Stephen Barnes and Landon Wilson from TMPL at UAB for the mass spectrometry analyses. We appreciate continuous support from Dr. Stanley M. Lemon, and Dr. Minkyung Yi. We thank Dr. Takaji Wakita for the transfer of pFGR-JFH1 plasmid utilized in our research. We thank all members of our laboratories for fruitful discussions while this work was carried out. This research has been supported by grants from CONICYT, Basal Project AFB 170004 (A.L.), FONDECYT 1160480 (A.L.), FONDECYT 1100200 (R.A.V.), and PCHA/Doctorado Nacional/2014-21140956 (S.H.).

Author information

Affiliations

Authors

Contributions

RAV contributed to the study conception and design. SH and AD performed the experiments. RAV wrote the manuscript. SH, AD, RAV, and AL checked and revised it. RAV and AL contributed with funding. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rodrigo A. Villanueva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals that required ethical approval.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by Wolfram Gerlich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1847 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hernández, S., Díaz, A., Loyola, A. et al. Recombinant HCV NS3 and NS5B enzymes exhibit multiple posttranslational modifications for potential regulation. Virus Genes 55, 227–232 (2019). https://doi.org/10.1007/s11262-019-01638-2

Download citation

Keywords

  • Hepatitis C virus
  • HCV
  • NS3
  • NS5B
  • Posttranslational modification
  • Protein regulation