Advertisement

Virus Genes

, Volume 54, Issue 6, pp 818–822 | Cite as

Detection and prevalence of adenoviruses from free-ranging black howler monkeys (Alouatta pigra)

  • Laura Elisa Argüello-SánchezEmail author
  • Alejandro Espinosa de los Monteros
  • Diego Santiago-Alarcon
  • Christian Alberto García-Sepúlveda
Article
  • 150 Downloads

Abstract

Adenoviruses are important pathogens known to infect vertebrate hosts, including a wide range of primates. Despite its importance, data on the diversity of these viruses in non-human primates living in their natural habitat remain scarce. In this study, we conducted a surveillance of adenoviral infection in wild black howler monkeys from two protected natural areas in Mexico. This was achieved by analyzing 67 fecal samples using a nested PCR that targets the adenovirus DNA polymerase gene. Adenoviral DNA was detected in 12 samples from both study sites, with an overall prevalence of 17.9%. The amplified DNA sequences shared 100% nucleotide identity and phylogenetic analyses revealed that the haplotype detected was novel, and clustered with Platyrrhini mastadenovirus A, which was previously described in captive New World monkeys. Our data, along with the previous evidence, confirm that monkeys native to the Americas are the original hosts of these adenoviruses.

Keywords

Adenovirus phylogeny DNA polymerase gene Mastadenovirus Primate adenovirus Platyrrhini 

Notes

Acknowledgements

We thank Secretaría del Medio Ambiente y Recursos Naturales, and Comisión Nacional de Areas Naturales Protegidas of Calakmul Biosphere Reserve and Palenque National Park, for permits and logistic support in the field for sample collection. We are grateful to Jonas Morales Linares, Ricardo Gómez Enríquez, and Sebastián Montejo Narvaez for field assistance and Janet Nolasco Soto for her assistance during lab analysis. LEAS received a Graduate Student grant from Consejo Nacional de Ciencia y Tecnología México (250327).

Author contributions

LEAS and AEM designed the study. LEAS collected and sequenced samples. DSA, AEM, LEAS, and CAGS participated in the discussion and manuscript drafting. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Berk AJ (2007) Adenoviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Martin MA, Lamb RA, Roizman B, Straus SE (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, pp 2355–2394Google Scholar
  2. 2.
    Kojaoghlanian T, Flomenberg P, Horwitz MS (2003) The impact of adenovirus infection on the immunocompromised host. Rev Med Virol 13:155–171.  https://doi.org/10.1002/rmv.386 CrossRefPubMedGoogle Scholar
  3. 3.
    Benkö M, Harrach B (2011) Molecular evolution of adenoviruses. In: Doerfler W, Bohm P (eds) Adenoviruses: model and vectors in virus host interactions. Springer, New York, pp 3–35Google Scholar
  4. 4.
    Chen EC, Yagi S, Kelly KR, Mendoza SP, Maninger N, Rosenthal A, Spinner A, Bales KL, Schnurr DP, Lerche NW, Chiu CY (2011) Cross-species transmission of a novel adenovirus associated with a fulminant pneumonia outbreak in a new world monkey colony. PLoS Pathog 7:e1002155.  https://doi.org/10.1371/journal.ppat.1002155 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hoppe E, Pauly M, Gillespie TR, Akoua-Koffi C, Hohmann G, Fruth B, Karhemere S, Madinda NF, Mugisha L, Muyembe JJ, Todd A, Petrzelkova KJ, Gray M, Robbins M, Bergl RA, Wittig RM, Zuberbühler K, Boesch C, Schubert G, Leendertz FH, Ehlers B, Calvignac-Spencer S (2015) Multiple cross-species transmission events of human adenoviruses (HAdV) during hominine evolution. Mol Biol Evol 32:2072–2084CrossRefGoogle Scholar
  6. 6.
    Chiu CY, Yagi S, Lu X, Yu G, Chen EC, Liu M, Dick EJ, Carey KD, Erdman DD, Leland MM, Patterson JL (2013) A novel adenovirus species associated with an acute respiratory outbreak in a baboon colony and evidence of coincident human infection. MBio.  https://doi.org/10.1128/mBio.00084-13 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Monteiro GS, Fleck JD, Klug M, Rech NK, Soliman MC, Staggemeier R, Rodrigues MT, Barros MP, Heinzelmann LS, Spilki FR (2015) Adenoviruses of canine and human origins in stool samples from free-living pampas foxes (Lycalopex gymnocercus) and crab-eating foxes (Cerdocyon thous) in Sao Francisco de Paula, Rio dos Sinos basin. Braz J Biol 75:11–16.  https://doi.org/10.1590/1519-6984.0313 CrossRefPubMedGoogle Scholar
  8. 8.
    Thompson RCA, Lymbery AJ, Smith A (2010) Parasites, emerging disease and wildlife conservation. Int J Parasitol 40:1163–1170.  https://doi.org/10.1016/j.ijpara.2010.04.009 CrossRefPubMedGoogle Scholar
  9. 9.
    Cooper N, Nunn CL (2013) Identifying future zoonotic disease threats. Evol Med Public Health 1:27–36CrossRefGoogle Scholar
  10. 10.
    Roy S, Vandenberghe LH, Kryazhimskiy S, Grant R, Calcedo R, Yuan X, Keough M, Sandhu A, Wang Q, Medina-Jaszek CA, Plotkin JB, Wilson JM (2009) Isolation and characterization of adenoviruses persistently shed from the gastrointestinal tract of non-human primates. PLoS Pathog 5:e1000503.  https://doi.org/10.1371/journal.ppat.1000503 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kozak RA, Ackford JG, Slaine P, Li A, Carman S, Campbell D, Welch MK, Kropinski AM, Nagy É (2015) Characterization of a novel adenovirus isolated from a skunk. Virology 485:16–24.  https://doi.org/10.1016/j.virol.2015.06.026 CrossRefPubMedGoogle Scholar
  12. 12.
    Shroyer EL, Kelley ST, Taylor PC, Vanderloo P, Lester TL (1979) Three serologic types of adenovirus infections of owl monkeys. Am J Vet Res 40:532–536PubMedGoogle Scholar
  13. 13.
    Wevers D, Metzger S, Babweteera F, Bieberbach M, Boesch C, Cameron K, Couacy-Hymann E, Cranfield M, Gray M, Harris LA, Head J, Jeffery K, Knauf S, Lankester F, Leendertz SAJ, Lonsdorf E, Mugisha L, Nitsche A, Reed P, Robbins M, Travis DA, Zommers Z, Leendertz FH, Ehlers B (2011) Novel adenoviruses in wild primates: a high level of genetic diversity and evidence of zoonotic transmissions. J Virol 85:10774–10784.  https://doi.org/10.1128/JVI.00810-11 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gál J, Hornyák Á, Mándoki M, Bakonyi T, Balka G, Szeredi L, Marosán M, Ludányi T, Forgách P, Sós E, Demeter Z, Farkas SL (2013) Novel mastadenovirus infection and clinical disease in a pygmy marmoset (Callithrix [Cebuella] pygmaea). Vet Microbiol 167:695–699.  https://doi.org/10.1016/j.vetmic.2013.08.008 CrossRefPubMedGoogle Scholar
  15. 15.
    Podgorski I (2016) Molecular characterisation of simian adenoviruses. Dissertation, Szent István UniversityGoogle Scholar
  16. 16.
    Ersching J, Hernandez MIM, Cezarotto FS, Ferreira JDS, Martins AB, Switzer WM, Xiang Z, Ertl HCJ, Zanetti CR, Pinto AR (2010) Neutralizing antibodies to human and simian adenoviruses in humans and New-World monkeys. Virology 407:1–6.  https://doi.org/10.1016/j.virol.2010.07.043 CrossRefPubMedGoogle Scholar
  17. 17.
    Wevers D, Leendertz FH, Scuda N, Boesch C, Robbins MM, Head J, Ludwig C, Kühn J, Ehlers B (2010) A novel adenovirus of Western lowland gorillas (Gorilla gorilla gorilla). Virol J 7:303.  https://doi.org/10.1186/1743-422X-7-303 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542.  https://doi.org/10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Posada D (2009) Selection of models of DNA evolution with jModelTest. Methods Mol Biol 537:93–112.  https://doi.org/10.1007/978-1-59745-251-9_5 CrossRefPubMedGoogle Scholar
  20. 20.
    Holmes EC (2008) Evolutionary history and phylogeography of human viruses. Mol Ecol 62:307–328.  https://doi.org/10.1146/annurev.micro.62.081307.162912 CrossRefGoogle Scholar
  21. 21.
    Tan B, Wu LJ, Yang XL, Li B, Zhang W, Lei YS, Li Y, Yang GX, Chen J, Chen G, Wang HZ, Shi ZL (2016) Isolation and characterization of adenoviruses infecting endangered golden snub-nosed monkeys (Rhinopithecus roxellana). Virol J 13:190.  https://doi.org/10.1186/s12985-016-0648-6 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nkogue CN, Horie M, Fujita S, Ogino M, Kobayashi Y, Mizukami K, Masatani T, Ezzikouri S, Matsuu A, Mizutani T, Ozawa M, Yamato O, Ngomanda A, Yamagiwa J, Tsukiyama-Kohara K (2016) Molecular epidemiological study of adenovirus infecting western lowland gorillas and humans in and around Moukalaba-Doudou National Park (Gabon). Virus Genes 52:671–678.  https://doi.org/10.1007/s11262-016-1360-8 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Seimon TA, Olson SH, Lee KJ, Rosen G, Ondzie A, Cameron K, Reed P, Anthony SJ, Joly DO, McAloose D, Lipkin WI (2015) Adenovirus and herpesvirus diversity in free-ranging great apes in the Sangha region of the Republic of Congo. PLoS ONE 10:1–18.  https://doi.org/10.1371/journal.pone.0118543 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Red de Biología Evolutiva, Laboratorio de Sistemática FilogenéticaInstituto de EcologíaXalapaMexico
  2. 2.Red de Biología y Conservación de VertebradosInstituto de EcologíaXalapaMexico
  3. 3.Laboratorio de Genómica Viral y Humana, Facultad de MedicinaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations