Virus Genes

, Volume 54, Issue 5, pp 724–728 | Cite as

Genetic diversity of bovine Picobirnavirus, Brazil

  • Juliana de Oliveira Navarro
  • Marcelo CandidoEmail author
  • Sabrina Ribeiro de Almeida-Queiroz
  • Maria da Glória Buzinaro
  • Márcia Cristina Livonesi
  • Andrezza Maria Fernandes
  • Ricardo Luiz Moro de Sousa


Picobirnaviruses (PBVs) are emerging and opportunistic viruses with possible zoonotic potential. In this study, we present the detection, molecular characterization, and genotypic differentiation of PBVs from genogroup I in bovine stool samples from different Brazilian regions. A high proportion of PCR-positive samples (23.4%) was detected in a total of 77 analyzed. Nucleotide identity, alignment, and phylogenetic analyses revealed high diversity among the studied sequences. The results obtained indicate, for the first time, the circulation of bovine PBVs belonging to genogroup I in different Brazilian states, with heterogeneous phylogenetic-clustering profiles.


Bovine picobirnavirus Molecular diagnostics Bovine viral diseases Animal RNA virus Molecular epidemiology 



This research was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Nos. 2006/52060-3 and 2012/18441-0) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, No. 472509/2010-1).

Author contributions

JON, MC, SRAQ, MGB, MCL, and RLMS conceived and designed the experiments. JON and MC performed the experiments. JON, MC, SRAQ, and RLMS analyzed the data. JON, MC, and RLMS wrote the manuscript. AMF participated in revising the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Ganesh B, Bányai K, Martella V, Jakab F, Masachessi G, Kobayashi N (2012) Picobirnavirus infections: viral persistence and zoonotic potential. Rev Med Virol 22:245–256. CrossRefPubMedGoogle Scholar
  2. 2.
    Takiuchi E, Macedo R, Kunz AF, Gallego JC, de Mello JL, Otonel RA, Alfieri AA (2016) Electrophoretic RNA genomic profiles of Brazilian Picobirnavirus (PBV) strains and molecular characterization of a PBV isolated from diarrheic calf. Virus Res 211:58–63. CrossRefPubMedGoogle Scholar
  3. 3.
    Ganesh B, Masachessi G, Mladenova Z (2014) Animal picobirnavirus. Virusdisease 25:223–238. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ganesh B, Nagashima S, Ghosh S, Nataraju SM, Rajendran K, Manna B et al (2011) Detection and molecular characterization of multiple strains of picobirnavirus causing mixed infection in a diarrhoeic child: emergence of prototype genogroup II-like strain in Kolkata, India. Int J Mol Epidemiol Genet 2:61–72PubMedGoogle Scholar
  5. 5.
    Mondal A, Majee S (2014) Novel bisegmented virus (picobirnavirus) of animals, birds and humans. Asian Pac J Trop Dis 4:154–158. CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Malik YS, Sharma AK, Kumar N, Sharma K, Ganesh B, Kobayashi N (2014) Identification and characterisation of a novel genogroup II picobirnavirus in a calf in India. Vet Rec 174:278. CrossRefPubMedGoogle Scholar
  7. 7.
    Silva RR, Bezerra DA, Kaiano JH, Oliveira DS, Silvestre RV, Gabbay YB et al (2014) Genogroup I avian picobirnavirus detected in Brazilian broiler chickens: a molecular epidemiology study. J Gen Virol 95:117–122. CrossRefGoogle Scholar
  8. 8.
    Pereira HG, Fialho AM, Flewett TH, Teixeira JMS, Andrade ZP (1988) Novel viruses in human faeces. Lancet 332:103–104. CrossRefGoogle Scholar
  9. 9.
    Vanopdenbosch E, Wellemans G (1989) Birna-type virus in diarrhoeic calf faeces. Vet Rec 125:610PubMedGoogle Scholar
  10. 10.
    Ghosh S, Kobayashi N, Nagashima S, Naik TN (2009) Molecular characterization of full-length genomic segment 2 of a bovine picobirnavirus (PBV) strain: evidence for high genetic diversity with genogroup I PBVs. J Gen Virol 90:2519–2524. CrossRefPubMedGoogle Scholar
  11. 11.
    Buzinaro MG, Freitas PP, Kisiellius JJ, Ueda M, Jerez JA (2003) Identification of a bisegmented double-stranded RNA virus (picobirnavirus) in calf faeces. Vet J 166:185–187. CrossRefPubMedGoogle Scholar
  12. 12.
    Malik YS, Chandrashekar KM, Sharma K, Haq AA, Vaid N, Chakravarti S et al (2011) Picobirnavirus detection in bovine and buffalo calves from foothills of Himalaya and Central India. Trop Anim Health Prod 43:1475–1478. CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Y, Bányai K, Tu X, Jiang B (2012) Simian genogroup I Picobirnaviruses: prevalence, genetic diversity, and zoonotic potential. J Clin Microbiol 50:2779–2782. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gillman L, Sánchez AM, Arbiza J (2013) Picobirnavirus in captive animals from Uruguay: identification of new hosts. Intervirology 56:46–49. CrossRefPubMedGoogle Scholar
  15. 15.
    Leite JP, Monteiro SP, Fialho AM, Pereira HG (1990) A novel avian virus with trisegmented double-stranded RNA and further observations on previously described similar viruses with bisegmented genome. Virus Res 16:119–126. CrossRefPubMedGoogle Scholar
  16. 16.
    Ganesh B, Nataraju SM, Rajendran K, Ramamurthy T, Kanungo S, Manna B et al (2010) Detection of closely related Picobirnaviruses among diarrhoeic children in Kolkata: evidence of zoonoses? Infect Genet Evol 10:511–516. CrossRefPubMedGoogle Scholar
  17. 17.
    Hoet AE, Nielsen PR, Hasoksuz M, Thomas C, Wittum TE, Saif LJ (2003) Detection of bovine torovirus and other enteric pathogens in feces from diarrhea cases in cattle. J Vet Diagn Invest 15:205–212. CrossRefPubMedGoogle Scholar
  18. 18.
    Rosen BI, Fang ZY, Glass RI, Monroe SS (2000) Cloning of Human picobirnavirus genomic segments and development of an RT-PCR detection assay. Virology 277:316–329. CrossRefPubMedGoogle Scholar
  19. 19.
    Renshaw RW, Ray R, Dubovi EJ (2000) Comparison of virus isolation and reverse transcription polymerase chain reaction assay for detection of bovine viral diarrhea virus in bulk milk tank samples. J Vet Diagn Invest 12:184–186. CrossRefPubMedGoogle Scholar
  20. 20.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98Google Scholar
  22. 22.
    Kumar S, Tamura K, Nei M (1994) MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers. Comput Appl Biosci 10:189–191PubMedGoogle Scholar
  23. 23.
    Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform 4:29. CrossRefGoogle Scholar
  24. 24.
    IBGE - Instituto Brasileiro de Geografia e Estatística (2017) Accessed 24 Nov 2017

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Juliana de Oliveira Navarro
    • 1
  • Marcelo Candido
    • 1
    Email author
  • Sabrina Ribeiro de Almeida-Queiroz
    • 1
  • Maria da Glória Buzinaro
    • 2
  • Márcia Cristina Livonesi
    • 3
  • Andrezza Maria Fernandes
    • 1
  • Ricardo Luiz Moro de Sousa
    • 1
  1. 1.Department of Veterinary Medicine, Faculty of Animal Science and Food EngineeringUniversity of São Paulo (FZEA/USP)PirassunungaBrazil
  2. 2.Department of Preventive Veterinary Medicine and Animal ReproductionSão Paulo State University (UNESP)JaboticabalBrazil
  3. 3.Department of Clinical AnalysisAlfenas Federal University (UNIFAL)AlfenasBrazil

Personalised recommendations