Advertisement

Virus Genes

, Volume 54, Issue 3, pp 432–437 | Cite as

Complete sequence and diversity of a maize-associated Polerovirus in East Africa

  • Deogracious P. Massawe
  • Lucy R. StewartEmail author
  • Jovia Kamatenesi
  • Theodore Asiimwe
  • Margaret G. Redinbaugh
Article

Abstract

Since 2011–2012, Maize lethal necrosis (MLN) has emerged in East Africa, causing massive yield loss and propelling research to identify viruses and virus populations present in maize. As expected, next generation sequencing (NGS) has revealed diverse and abundant viruses from the family Potyviridae, primarily sugarcane mosaic virus (SCMV), and maize chlorotic mottle virus (MCMV) (Tombusviridae), which are known to cause MLN by synergistic co-infection. In addition to these expected viruses, we identified a virus in the genus Polerovirus (family Luteoviridae) in 104/172 samples selected for MLN or other potential virus symptoms from Kenya, Uganda, Rwanda, and Tanzania. This polerovirus (MF974579) nucleotide sequence is 97% identical to maize-associated viruses recently reported in China, termed ‘maize yellow mosaic virus’ (MaYMV) and maize yellow dwarf virus (MaYMV; KU291101, KU291107, MYDV-RMV2; KT992824); and 99% identical to MaYMV (KY684356) infecting sugarcane and itch grass in Nigeria; 83% identical to a barley-associated polerovirus recently identified in Korea (BVG; KT962089); and 79% identical to the U.S. maize-infecting polerovirus maize yellow dwarf virus (MYDV-RMV; KT992824). Nucleotide sequences from ORF0 of 20 individual East African isolates collected from Kenya, Uganda, Rwanda, and Tanzania shared 98% or higher identity, and were detected in 104/172 (60.5%) of samples collected for virus-like symptoms, indicating extensive prevalence but limited diversity of this virus in East Africa. We refer to this virus as “MYDV-like polerovirus” until symptoms of the virus in maize are known.

Keywords

Polerovirus Maize yellow mosaic virus (MaYMV) Next generation sequencing (NGS) East Africa Maize 

Notes

Acknowledgements

This project was supported in part by funds from Innovative Agriculture Research Initiative (iAGRI-USAID Award Number CA-621-A-00-11-00009-00) supporting D. P. Massawe training by Dr. L. R. Stewart. A PEARL Grant (OPP1112585) to T. Asiimwe from the Bill and Melinda Gates Foundation supported collection and analysis of samples from Rwanda, in part. We thank our collaborators from Uganda (Dr. Andrew Kiggundu) and Kenya (Dr. George Mahuku, IITA) for providing original samples used in this work. The remainder of the work was supported by USDA-ARS intramural funding for project ‘Control of Virus Diseases in Corn and Soybean’ at the Corn, Soybean and Wheat Quality Research Unit in Wooster, OH. We thank Kristen Willie (USDA) for RNA sample preparation, Brian Hodge (OSU) for laboratory troubleshooting, Kelly Barriball (USDA), and Dr. M. Amine Batnini for proofreading this work.

Author contributions

DPM collected samples in Tanzania, and performed research; Dr. LRS conceived and designed the study, collected samples in Tanzania, analyzed data, supervised project, and directed manuscript preparation; JK assisted in the extraction of the viruses from maize leave samples; Dr. TA lead and designed Rwanda survey supported by a PEARL Grant (OPP1112585); and Dr. MGR, led and supervised on-site collections of samples and metadata in Kenya and Uganda.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This research had no human or animal subjects.

Supplementary material

11262_2018_1560_MOESM1_ESM.pptx (359 kb)
Figure S1 P0 partial protein sequence alignment: minimal differences. Nucleotide sequences (249-838 bp) were translated into amino acids (aa) for protein analysis by using CLC workbench program; (Germantown, MD). The first reading frame was selected to allow the translation to start from the first nucleotide. Translated amino acids were aligned together using Gonnet matrix with slow and accurate model of 0.1 extension gap cost on MacVector software (Version 15.5.3; Apex, NC). Supplementary material 1 (PPTX 358 kb)
11262_2018_1560_MOESM2_ESM.docx (32 kb)
Table S1 Primers designed from RNA-Seq contigs of MYDV-like polerovirus. Table S2 East African samples testing positive for MYDV-like polerovirus by RT-PCR. Supplementary material 2 (DOCX 32 kb)

References

  1. 1.
    R.A. Fischer, D. Byerlee, G. Edmeades, ACIAR Monograph No. 158. (2014)Google Scholar
  2. 2.
    H. De Groote, G. Dema, G.B. Sonda, Z.M. Gitonga, Field Crops Res. 153, 22 (2013)CrossRefGoogle Scholar
  3. 3.
    P. Ranum, J.P. Peña-Rosas, M.N. Garcia-Casal, Ann. N. Y. Acad. Sci. 1312, 105 (2014)CrossRefPubMedGoogle Scholar
  4. 4.
    G. Mahuku, B.E. Lockhart, B. Wanjala, M.W. Jones, J.N. Kimunye, L.R. Stewart, B.J. Cassone, S. Sevgan, J.O. Nyasani, E. Kusia, P.L. Kumar, C.L. Niblett, A. Kiggundu, G. Asea, H.R. Pappu, A. Wangai, B.M. Prasanna, M.G. Redinbaugh, Phytopathology 105, 956 (2015)CrossRefPubMedGoogle Scholar
  5. 5.
    H. De Groote, F. Oloo, S. Tongruksawattana, B. Das, Crop Prot. 82, 30 (2016)CrossRefGoogle Scholar
  6. 6.
    C.L. Niblett, L.E. Claflin, Plant Dis. Rep. 62, 15 (1978)Google Scholar
  7. 7.
    L.R. Stewart, K. Willie, S. Wijeratne, M.G. Redinbaugh, D.P. Massawe, C.L. Niblett, A. Kiggundu, T. Asiimwe, Plant Dis. 101, 1455 (2017)CrossRefGoogle Scholar
  8. 8.
    I.P. Adams, D.W. Miano, Z.M. Kinyua, A. Wangai, E. Kimani, N. Phiri, R. Reeder, V. Harju, R. Glover, U. Hany, R. Souza-Richards, P. Deb Nath, T. Nixon, A. Fox, A. Barnes, J. Smith, A. Skelton, R. Thwaites, R. Mumford, N. Boonham, Plant. Pathol. 62, 741 (2013)CrossRefGoogle Scholar
  9. 9.
    L. Xie, J. Zhang, Q. Wang, C. Meng, J. Hong, X. Zhou, J. Phytopathol. 159, 191 (2011)CrossRefGoogle Scholar
  10. 10.
    D.F. Quito-Avila, R.A. Alvarez, A.A. Mendoza, Eur. J. Plant Pathol. 146, 705 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Chen, G. Jiang, J. Wu, Y. Liu, Y. Qian, X. Zhou, Viruses 8, 120 (2016)CrossRefPubMedCentralGoogle Scholar
  12. 12.
    C. Hulo, E. De Castro, P. Masson, L. Bougueleret, A. Bairoch, I. Xenarios, P. Le Mercier, Nucleic Acids Res. 39, D576 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    W.A. Miller, Luteoviruses. In: Encyclopedia of virology, 792 (1994)Google Scholar
  14. 14.
    G. Thottappilly, N. Bosque-Pérez, H.W. Rossel, Plant. Pathol. 42, 494 (1993)CrossRefGoogle Scholar
  15. 15.
    E.N. Krueger, R.J. Beckett, S.M. Gray, W.A. Miller, Front. Microbiol. 4, 205 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    F. Wang, B.G. Zhou, Z.L. Gao, D.F. Xu, Plant Dis. 100, 1508 (2016)CrossRefGoogle Scholar
  17. 17.
    L.R. Stewart, R. Teplier, J.C. Todd, M.W. Jones, B.J. Cassone, S. Wijeratne, A. Wijeratne, M.G. Redinbaugh, Phytopathology 104, 1360 (2014)CrossRefPubMedGoogle Scholar
  18. 18.
    Y. Jiao, P. Peluso, J. Shi, T. Liang, M.C. Stitzer, B. Wang, M.S. Campbell, J.C. Stein, X. Wei, C.-S. Chin, Nature 546, 524 (2017)PubMedGoogle Scholar
  19. 19.
    F. Zhao, S. Lim, R.H. Yoo, D. Igori, S.M. Kim, D.Y. Kwak, S.L. Kim, B.C. Lee, J.S. Moon, Arch. Virol. 161, 2047 (2016)CrossRefPubMedGoogle Scholar
  20. 20.
    A. Yahaya, M. Al Rwahnih, D.B. Dangora, L. Gregg, M.D. Alegbejo, M.D. Alegbejo, P. Lava Kumar, O.J. Alabi, Plant Dis. 101, 1335 (2017)CrossRefGoogle Scholar
  21. 21.
    A.I. ElSayed, E. Komor, J. Gen. Plant Pathol. 78, 207 (2012)CrossRefGoogle Scholar
  22. 22.
    E. Smirnova, A.E. Firth, W.A. Miller, D. Scheidecker, V. Brault, C. Reinbold, A.M. Rakotondrafara, B.Y.-W. Chung, V. Ziegler-Graff, PLoS Pathog. 11, e1004868 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    A.M.Q. King, Virus taxonomy: ninth report of the international committee on taxonomy of viruses (Elsevier, Oxford, 2011), pp. 1045–1053Google Scholar
  24. 24.
    L.L. Domier, L.I. Lukasheva, C.J. D’Arcy, Intervirology 37, 2 (1994)CrossRefPubMedGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Department of Plant PathologyOhio State UniversityWoosterUSA
  2. 2.USDA-ARS Corn, Soybean and Wheat Quality Research UnitWoosterUSA
  3. 3.Biotechnology ProgramRwanda Agriculture BoardKigaliRwanda

Personalised recommendations