Advertisement

Virus Genes

, Volume 54, Issue 3, pp 343–350 | Cite as

HSV-1-encoded microRNA miR-H1 targets Ubr1 to promote accumulation of neurodegeneration-associated protein

  • Kai Zheng
  • Qiuying Liu
  • Shaoxiang Wang
  • Zhe Ren
  • Kaio Kitazato
  • Depo Yang
  • Yifei Wang
Article

Abstract

Herpes simplex virus 1 (HSV-1) encodes various microRNAs (miRNAs), whose targets are largely unknown. miR-H1 is the first discovered HSV-1 miRNA and is expressed predominantly in productive infection. Here we show that ubiquitin protein ligase E3 component n-recognin 1 (Ubr1) is a cellular target of miR-H1. Ubr1 is a RING-type E3 ubiquitin ligase of the Arg/N-end rule pathway, which causes the degradation of proteins bearing “destabilizing” N-terminal residues, such as neurodegeneration-associated protein fragment β-amyloid. Using model substrates, we found that miR-H1 significantly repressed the expression and activity of Ubr1. Consequently, miR-H1-mediated Ubr1 silencing resulted in the accumulation of β-amyloid, which might contribute to the neurodegenerative pathogenesis enhanced by HSV-1. Our results provide novel insights into the mechanism by which HSV-1-encoded miR-H1 functions in neurodegenerative pathogenesis through targeting Ubr1-mediated Arg/N-end rule degradation pathway.

Keywords

HSV-1 miRNA Ubr1 Neurodegeneration Ubiquitin 

Notes

Acknowledgements

We thank Dr. Xiao Wang for her kindly support. This work was supported by Grants from the National Natural Science Foundation of China (Nos. 81603341, 81573471, and 81274170), the China Postdoctoral Science Foundation (Grant Nos. 2015M570726 and 2015M582472), and the Shenzhen Science and Technology Project (No. JCYJ20150324141711568).

Author contributions

KZ, DY, and YW designed the research. KZ, QL, SW, ZR, and KK helped with the experiments, data analysis, and discussion. KZ and YW wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Therefore, informed content was not required for this work.

Supplementary material

11262_2018_1551_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. 1.
    D.P. Bartel, MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    V.N. Kim, J. Han, M.C. Siomi, Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009)CrossRefPubMedGoogle Scholar
  3. 3.
    B.R. Cullen, Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev. 25, 1881–1894 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    R.L. Skalsky, B.R. Cullen, Viruses, microRNAs, and host interactions. Annu. Rev. Microbiol. 64, 123–141 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    A. Gupta, J.J. Gartner, P. Sethupathy et al., Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442, 82–85 (2006)CrossRefPubMedGoogle Scholar
  6. 6.
    R.P. Kincaid, C.S. Sullivan, Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog. 8, e1003018 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    D. Nachmani, N. Stern-Ginossar, R. Sarid et al., Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5, 376–385 (2009)CrossRefPubMedGoogle Scholar
  8. 8.
    N. Stern-Ginossar, N. Elefant, A. Zimmermann et al., Host immune system gene targeting by a viral miRNA. Science 317, 376–381 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    J.L. Umbach, M.F. Kramer, I. Jurak et al., MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454, 780–783 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    C. Cui, A. Griffiths, G. Li et al., Prediction and identification of herpes simplex virus 1-encoded microRNAs. J. Virol. 11, 5499–5508 (2006)CrossRefGoogle Scholar
  11. 11.
    I. Jurak, M.F. Kramer, J.C. Mellor et al., Numerous conserved and divergent microRNAs expressed by herpes simplex virus 1 and 2. J. Virol. 84, 4659–4672 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    S. Tang, A.S. Bertke, A. Patel et al., An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc. Natl. Acad. Sci. USA 105, 10931–10936 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    J.L. Umbach, M.A. Nagel, R.J. Cohrs et al., Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J. Virol. 83, 10677–10683 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    D.J. Munson, A.D. Burch, A novel miRNA produced during lytic HSV-1 infection is important for efficient replication in tissue culture. Arch. Virol. 157, 1677–1688 (2012)CrossRefPubMedGoogle Scholar
  15. 15.
    S. Tang, A. Patel, P.R. Krause, Novel less-abundant viral microRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J. Virol. 83, 1433–1442 (2009)CrossRefPubMedGoogle Scholar
  16. 16.
    R.L. Thompson, N.M. Sawtell, The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J. Virol. 71, 5432–5440 (1997)PubMedPubMedCentralGoogle Scholar
  17. 17.
    I. Jurak, L.B. Silverstein, M. Sharma et al., Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity. J. Virol. 86, 10093–10102 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    J. Maggioncalda, A. Mehta, O. Bagasra et al., A herpes simplex virus type 1 mutant with a deletion immediately upstream of the LAT locus establishes latency and reactivates from latently infected mice with normal kinetics. J. Neurovirol. 2(4), 268–278 (1996)CrossRefPubMedGoogle Scholar
  19. 19.
    T. Tasaki, L.C.F. Mulder, A. Iwamatsu et al., A family of mammalian E3 ligases that contain the UBR box motif and recognize N-degron. Mol. Cell. Biol. 25, 7120–7136 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    A. Varshavsky, The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    H.K. Kim, R.R. Kim, J.H. Oh et al., The N-terminal methionine of cellular proteins as a degradation signal. Cell 156, 1–12 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Chen, D.A. Ridzon, A.J. Broomer et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    M.F. Kramer, I. Jurak, J.M. Pesola et al., Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia. Virology 417, 239–248 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    P. Sethupathy, M. Megraw, A.G. Hatzigeorgiou, A guide through present computational approaches for the identification of mammalian microRNA targets. Nat. Method 3, 881–886 (2006)CrossRefGoogle Scholar
  25. 25.
    W. Ye, Q. Lv, C.K.A. Wong et al., The effect of central loops in miRNA: MRE duplexes on the efficiency of miRNA-mediated gene regulation. PLoS ONE 3, e1719 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    M. Rehmsmeier, P. Steffen, M. Hochsmann et al., Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    J. Brennecke, A. Stark, R.B. Russell et al., Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    J. Krutzfeldt, N. Rajewsky, R. Braich et al., Silencing of microRNAs in vivo with “antagomirs”. Nature 438, 685–689 (2005)CrossRefPubMedGoogle Scholar
  29. 29.
    M.J. Ball, W.J. Lukiw, E.M. Kammerman et al., Intracerebral propagation of Alzheimer’s disease: strengthening evidence of a herpes simplex virus etiology. Alzheimers Dement. 9, 169–175 (2013)CrossRefPubMedGoogle Scholar
  30. 30.
    C. Martin, L. Solis, M.I. Concha et al., Herpes simplex virus type 1 as risk factor associated to Alzheimer disease. Rev. Med. Chill. 139, 779–786 (2011)CrossRefGoogle Scholar
  31. 31.
    C.S. Brower, K.I. Piatkov, A. Varshavsky, Neurodegeneration-associated protein fragments as short-lived substrates of the N-end rule pathway. Mol. Cell 50, 161–171 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    D. Nachmani, D. Lankry, D.G. Wolf et al., The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat. Immunol. 11, 806–813 (2010)CrossRefPubMedGoogle Scholar
  33. 33.
    M. Chen, D. Gerlier, Viral hijacking of cellular ubiquitin pathways as an anti-innate immunity strategy. Viral Immunol. 19, 349–362 (2006)CrossRefPubMedGoogle Scholar
  34. 34.
    M.A. Wozniak, R.F. Itzhaki, S.J. Shipley et al., Herpes simplex virus infection causes cellular-amyloid accumulation and secretase upregulation. Neurosci. Lett. 429, 95–100 (2007)CrossRefPubMedGoogle Scholar
  35. 35.
    G. de Chiara, M.E. Marcocci, L. Civitelli et al., APP processing induced by herpes simplex virus type 1 (HSV-1) yields several APP fragments in human and rat neuronal cells. PLoS ONE 5, e13989 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    R. Piacentinni, L. Civitelli, C. Ripoli et al., HSV-1 promotes Ca2+-mediated APP phosphorylation and accumulation in rat cortical neurons. Neurobiol. Aging 32, e13–e26 (2011)CrossRefGoogle Scholar
  37. 37.
    S.Y. Hung, W.P. Huang, H.C. Liou et al., Autophagy protects neuron from Abeta-induced cytotoxicity. Autophagy 5, 502–510 (2009)CrossRefPubMedGoogle Scholar
  38. 38.
    S. Santana, M. Recuero, M.J. Bullido et al., Herpes simplex virus type 1 induces the accumulation of intracellular β-amyloid in autophagic compartments and the inhibition of the non-amylodiogenic pathway in human neuroblastoma cells. Neurobiol. Aging 33, e19–e33 (2012)CrossRefGoogle Scholar
  39. 39.
    M.A. Wozniak, A.L. Frost, C.M. Preston et al., Antivirals reduce the formation of key Alzheimer’s disease molecules in cell cultures acutely infected with herpes simplex virus type 1. PLoS ONE 6, e25152 (2011)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Pharmaceutical SciencesSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Pharmaceutical Sciences, School of MedicineShenzhen UniversityShenzhenChina
  3. 3.School of Life Science and Technology, Guangzhou Jinan Biomedicine Research and Development CenterJinan UniversityGuangzhouChina
  4. 4.Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan

Personalised recommendations