Virus Genes

, Volume 54, Issue 3, pp 397–405 | Cite as

Amino acid substitutions in low pathogenic avian influenza virus strains isolated from wild birds in Korea

  • Kwang-Hyun Oh
  • Jong-Suk Mo
  • Yeon-Ji Bae
  • Seung-Baek Lee
  • Van Dam Lai
  • Seung-Jun Wang
  • In-Pil MoEmail author


Wild birds are natural hosts and reservoirs for influenza A viruses. However, many species, such as many waterfowl, are asymptomatic when infected and so facilitate the generation of viral genetic diversity. Mutations of key genes affect the replicability, pathogenicity, transmissibility, and antiviral resistance of influenza A viruses. In this study, we isolated avian influenza (AI) viruses from wild bird fecal samples and analyzed changes in amino acids over time and geographic region to monitor the biological change of the AI virus. Between 2014 and 2016, we collected 38,921 fresh fecal samples from major wild bird habitats located throughout Korea and isolated 123 AI viruses. We subsequently selected 22 amino acid sites to analyze for changes. These sites included ten sites associated with replication, ten sites associated with pathogenicity, three sites associated with transmission, and seven sites associated with antiviral resistance. We found substitution rates of 71.7% at the C38Y amino acid site within the polymerase basic protein 1 (PB1) gene, 66.7% at the D222G site within the hemagglutinin (HA) 1 gene, and 75.6% at the A184 site within the nucleoprotein (NP) gene. Alterations of the PB1, HA1, and NP genes are closely associated with increased pathogenicity in chickens and mammals. The remaining sites of interest exhibited few modifications. In this study, we confirmed that AI viruses circulating among wild birds in Korea consistently exhibit modifications at amino acid sites linked with replication and pathogenicity.


Avian influenza surveillance Virus mutation Biological characteristics Genetic information Korea 



Avian influenza


Low pathogenic avian influenza


High pathogenic avian influenza


Polymerase basic protein 1


Polymerase basic protein 2


Polymerase acidic protein








Matrix protein


Nonstructural protein



We thank the Avian Disease Laboratory of Chungbuk National University for excellent technical assistance and the Biosafety Research Team of National Institute of Environmental Research for contributing to the sampling of the bird feces in this study.


  1. 1.
    C.F. Arias, M. Escalera-Zamudio, L. Soto-Del Rio Mde, A.G. Cobian-Guemes, P. Isa, S. Lopez, Molecular anatomy of 2009 influenza virus A (H1N1). Arch. Med. Res. 40, 643–654 (2009)CrossRefPubMedGoogle Scholar
  2. 2.
    Y.J. Bae, S.B. Lee, K.C. Min, J.S. Mo, E.O. Jeon, B.S. Koo, H.I. Kwon, Y.K. Choi, J.J. Kim, J.N. Kim, I.P. Mo, Pathological evaluation of natural case of a highly pathogenic avian influenza virus, subtype H5N8, in broiler breeders and commercial layers in South Korea. Avian Dis. 59, 175–182 (2015)CrossRefPubMedGoogle Scholar
  3. 3.
    S.K. Biswas, P.L. Boutz, D.P. Nayak, Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J. Virol. 72, 5493–5501 (1998)PubMedPubMedCentralGoogle Scholar
  4. 4.
    K. Cheng, Z. Yu, H. Chai, W. Sun, Y. Xin, Q. Zhang, J. Huang, K. Zhang, X. Li, S. Yang, T. Wang, X. Zheng, H. Wang, C. Qin, J. Qian, H. Chen, Y. Hua, Y. Gao, X. Xia, PB2-E627K and PA-T97I substitutions enhance polymerase activity and confer a virulent phenotype to an H6N1 avian influenza virus in mice. Virology 468–470, 207–213 (2014)CrossRefPubMedGoogle Scholar
  5. 5.
    C.L. Cheung, J.M. Rayner, G.J. Smith, P. Wang, T.S. Naipospos, J. Zhang, K.Y. Yuen, R.G. Webster, J.S. Peiris, Y. Guan, H. Chen, Distribution of amantadine-resistant H5N1 avian influenza variants in Asia. J. Infect. Dis. 193, 1626–1629 (2006)CrossRefPubMedGoogle Scholar
  6. 6.
    V. Czudai-Matwich, A. Otte, M. Matrosovich, G. Gabriel, H.D. Klenk, PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J. Virol. 88, 8735–8742 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    S.K. Dankar, S. Wang, J. Ping, N.E. Forbes, L. Keleta, Y. Li, E.G. Brown, Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence. Virol. J. 8, 13 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    M.D. de Jong, T.T. Tran, H.K. Truong, M.H. Vo, G.J. Smith, V.C. Nguyen, V.C. Bach, T.Q. Phan, Q.H. Do, Y. Guan, J.S. Peiris, T.H. Tran, J. Farrar, Oseltamivir resistance during treatment of influenza A (H5N1) infection. N. Engl. J. Med. 353, 2667–2672 (2005)CrossRefPubMedGoogle Scholar
  9. 9.
    R. El-Shesheny, A. Kandeil, O. Bagato, A.M. Maatouq, Y. Moatasim, A. Rubrum, M.S. Song, R.J. Webby, M.A. Ali, G. Kayali, Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade. J. Gen. Virol. 95, 1444–1463 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    S. Fan, M. Hatta, J.H. Kim, M.Q. Le, G. Neumann, Y. Kawaoka, Amino acid changes in the influenza A virus PA protein that attenuate avian H5N1 viruses in mammals. J. Virol. 88, 13737–13746 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    G. Gabriel, B. Dauber, T. Wolff, O. Planz, H.D. Klenk, J. Stech, The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc. Natl. Acad. Sci. USA 102, 18590–18595 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    E. Ghedin, N.A. Sengamalay, M. Shumway, J. Zaborsky, T. Feldblyum, V. Subbu, D.J. Spiro, J. Sitz, H. Koo, P. Bolotov, D. Dernovoy, T. Tatusova, Y. Bao, K. St George, J. Taylor, D.J. Lipman, C.M. Fraser, J.K. Taubenberger, S.L. Salzberg, Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437, 1162–1166 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    E. Hoffmann, J. Stech, Y. Guan, R.G. Webster, D.R. Perez, Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 146, 2275–2289 (2001)CrossRefPubMedGoogle Scholar
  14. 14.
    M. Igarashi, K. Ito, R. Yoshida, D. Tomabechi, H. Kida, A. Takada, Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin. PLoS ONE 5, e8553 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    B.W. Jagger, M.J. Memoli, Z.M. Sheng, L. Qi, R.J. Hrabal, G.L. Allen, V.G. Dugan, R. Wang, P. Digard, J.C. Kash, J.K. Taubenberger, The PB2-E627K mutation attenuates viruses containing the 2009 H1N1 influenza pandemic polymerase. MBio 1, e00067-10 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    H.M. Kang, O.M. Jeong, M.C. Kim, J.S. Kwon, M.R. Paek, J.G. Choi, E.K. Lee, Y.J. Kim, J.H. Kwon, Y.J. Lee, Surveillance of avian influenza virus in wild bird fecal samples from South Korea, 2003-2008. J. Wildl. Dis. 46, 878–888 (2010)CrossRefPubMedGoogle Scholar
  17. 17.
    Y.I. Kim, P.N. Pascua, H.I. Kwon, G.J. Lim, E.H. Kim, S.W. Yoon, S.J. Park, S.M. Kim, E.J. Choi, Y.J. Si, O.J. Lee, W.S. Shim, S.W. Kim, I.P. Mo, Y. Bae, Y.T. Lim, M.H. Sung, C.J. Kim, R.J. Webby, R.G. Webster, Y.K. Choi, Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerg. Microbes. Infect. 3, e75 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    O.T. Li, I. Barr, C.Y. Leung, H. Chen, Y. Guan, J.S. Peiris, L.L. Poon, Reliable universal RT-PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes. J. Virol. Methods 142, 218–222 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    T.C. Li, M.C. Chan, N. Lee, Clinical implications of antiviral resistance in influenza. Viruses. 7, 4929–4944 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    M. Liu, Y. Guan, M. Peiris, S. He, R.J. Webby, D. Perez, R.G. Webster, The quest of influenza A viruses for new hosts. Avian Dis. 47, 849–856 (2003)CrossRefPubMedGoogle Scholar
  21. 21.
    B. Lu, H. Zhou, W. Chan, G. Kemble, H. Jin, Single amino acid substitutions in the hemagglutinin of influenza A/Singapore/21/04 (H3N2) increase virus growth in embryonated chicken eggs. Vaccine. 24, 6691–6693 (2006)CrossRefPubMedGoogle Scholar
  22. 22.
    Mo IP, Song CS, Kim KS, Rhee JC (1997) An occurrence of non-highly pathogenic avian influenza in Korea. In Proceedings of the forth international symposium on avian influenza, pp 379-383. United States Animal Health Association, Tallahassee, FLGoogle Scholar
  23. 23.
    I.P. Mo, Y.J. Bae, S.B. Lee, J.S. Mo, K.H. Oh, J.H. Shin, H.M. Kang, Y.J. Lee, Review of avian influenza outbreaks in South Korea from 1996 to 2014. Avian Dis. 60, 172–177 (2016)CrossRefPubMedGoogle Scholar
  24. 24.
    B.R. Murphy, R.G. Webster, Orthomyxoviruses, in Fields Virology, 3rd edn., ed. by B.N. Fields, D.M. Knipe, P.M. Howley (Lippincott-Raven, Philadelphia, 1996), pp. 1397–1445Google Scholar
  25. 25.
    G. Neumann, T. Watanabe, H. Ito, S. Watanabe, H. Goto, P. Gao, M. Hughes, D.R. Perez, R. Donis, E. Hoffmann, G. Hobom, Y. Kawaoka, Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl. Acad. Sci. USA 96, 9345–9350 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    G. Orozovic, N. Latorre-Margalef, J. Wahlgren, S. Muradrasoli, B. Olsen, Degenerate primers for PCR amplification and sequencing of the avian influenza A neuraminidase gene. J. Virol. Methods 170, 94–98 (2010)CrossRefPubMedGoogle Scholar
  27. 27.
    M. Ozawa, K. Fujii, Y. Muramoto, S. Yamada, S. Yamayoshi, A. Takada, H. Goto, T. Horimoto, Y. Kawaoka, Contributions of two nuclear localization signals of influenza A virus nucleoprotein to viral replication. J. Virol. 81, 30–41 (2007)CrossRefPubMedGoogle Scholar
  28. 28.
    D.A. Senne, B. Panigrahy, Y. Kawaoka, J.E. Pearson, J. Suss, M. Lipkind, H. Kida, R.G. Webster, Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis. 40, 425–437 (1996)CrossRefPubMedGoogle Scholar
  29. 29.
    K. Sleeman, Z. Guo, J. Barnes, M. Shaw, J. Stevens, L.V. Gubareva, R292K substitution and drug susceptibility of influenza A(H7N9) viruses. Emerg. Infect. Dis. 19, 1521–1524 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    D.E. Stallknecht, S.M. Shane, Host range of avian influenza virus in free-living birds. Vet. Res. Commun. 12, 125–141 (1988)CrossRefPubMedGoogle Scholar
  31. 31.
    Y. Suzuki, Y. Uchida, T. Tanikawa, N. Maeda, N. Takemae, T. Saito, Amino acid substitutions in PB1 of avian influenza viruses influence pathogenicity and transmissibility in chickens. J. Virol. 88, 11130–11139 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    N.J. Thomas, D.B. Hunter, C.T. Atkinson, Infectious diseases of wild birds (Wiley, New York, 2008), p. 119Google Scholar
  33. 33.
    S. Tong, X. Zhu, Y. Li, M. Shi, J. Zhang, M. Bourgeois, H. Yang, X. Chen, S. Recuenco, J. Gomez, L.M. Chen, A. Johnson, Y. Tao, C. Dreyfus, W. Yu, R. McBride, P.J. Carney, A.T. Gilbert, J. Chang, Z. Guo, C.T. Davis, J.C. Paulson, J. Stevens, C.E. Rupprecht, E.C. Holmes, I.A. Wilson, R.O. Donis, New world bats harbor diverse influenza A viruses. PLoS Pathog. 9, e1003657 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    K. Tsukamoto, H. Ashizawa, K. Nakanishi, N. Kaji, K. Suzuki, M. Okamatsu, S. Yamaguchi, M. Mase, Subtyping of avian influenza viruses H1 to H15 on the basis of hemagglutinin genes by PCR assay and molecular determination of pathogenic potential. J. Clin. Microbiol. 46, 3048–3055 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    J.L. Wasilenko, L. Sarmento, M.J. Pantin-Jackwood, A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. Arch. Virol. 154, 969–979 (2009)CrossRefPubMedGoogle Scholar
  36. 36.
    R.G. Webster, W.J. Bean, O.T. Gorman, T.M. Chambers, Y. Kawaoka, Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179 (1992)PubMedPubMedCentralGoogle Scholar
  37. 37.
    L. Xu, L. Bao, Q. Lv, W. Deng, Y. Ma, F. Li, L. Zhan, H. Zhu, C. Ma, C. Qin, A single-amino-acid substitution in the HA protein changes the replication and pathogenicity of the 2009 pandemic A (H1N1) influenza viruses in vitro and in vivo. Virol. J. 7, 325 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    M. Yasugi, S. Nakamura, T. Daidoji, N. Kawashita, R. Ramadhany, C.S. Yang, T. Yasunaga, T. Iida, T. Horii, K. Ikuta, K. Takahashi, T. Nakaya, Frequency of D222G and Q223R hemagglutinin mutants of pandemic (H1N1) 2009 influenza virus in Japan between 2009 and 2010. PLoS ONE 7, e30946 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Z. Zhao, C. Yi, L. Zhao, S. Wang, L. Zhou, Y. Hu, W. Zou, H. Chen, M. Jin, PB2-588I enhances 2009 H1N1 pandemic influenza virus virulence by increasing viral replication and exacerbating PB2 inhibition of beta interferon expression. J. Virol. 88, 2260–2267 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    B. Zhou, Y. Li, R. Halpin, E. Hine, D.J. Spiro, D.E. Wentworth, PB2 residue 158 is a pathogenic determinant of pandemic H1N1 and H5 influenza a viruses in mice. J. Virol. 85, 357–365 (2011)CrossRefPubMedGoogle Scholar
  41. 41.
    B. Zhou, M.B. Pearce, Y. Li, J. Wang, R.J. Mason, T.M. Tumpey, D.E. Wentworth, Asparagine substitution at PB2 residue 701 enhances the replication, pathogenicity, and transmission of the 2009 pandemic H1N1 influenza A virus. PLoS ONE 8, e67616 (2013)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kwang-Hyun Oh
    • 1
  • Jong-Suk Mo
    • 1
  • Yeon-Ji Bae
    • 1
  • Seung-Baek Lee
    • 1
  • Van Dam Lai
    • 1
  • Seung-Jun Wang
    • 2
  • In-Pil Mo
    • 1
    Email author
  1. 1.Avian Disease Laboratory, College of Veterinary MedicineChungbuk National UniversityCheongjuKorea
  2. 2.Environmental Health Research DivisionNational Institute of Environmental ResearchIncheonKorea

Personalised recommendations