Advertisement

Virus Genes

, Volume 54, Issue 3, pp 446–456 | Cite as

Isolation and identification of Salmonella pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea

  • Kunyuan Tie
  • Yuyu Yuan
  • Shiqing Yan
  • Xi Yu
  • Qiuyang Zhang
  • Huihui Xu
  • Yang Zhang
  • Jingmin Gu
  • Changjiang Sun
  • Liancheng Lei
  • Wenyu Han
  • Xin Feng
Article

Abstract

Salmonella pullorum is the major pathogen that is harmful to the poultry industry in developing countries, and the treatment of chicken diarrhea caused by S. pullorum has become increasingly difficult. In this study, a virulent bacteriophage YSP2, which was able to specifically infect Salmonella, was isolated and characterized. Phage YSP2 was classified in the Siphoviridae family and had a short latent period of 10 min. No bacterial virulence- or lysogenesis-related ORF is present in the YSP2 genome, making it eligible for use in phage therapy. Experiments in vivo investigated the potential use of phages as a therapy against diarrhea in chickens caused by S. pullorum in a chicken diarrhea model, demonstrating that a single oral administration of YSP2 (1 × 1010 PFU/mL, 80 μL/chicken) 2 h after S. pullorum oral administration at a double median lethal dose was sufficient to protect chickens against diarrhea. Gross inspection showed that YSP2 can effectively reduce organ damage and significantly relieve hemorrhage in the intestine and liver tissue. Moreover, YSP2 can maintain a high curative effect when diluted to 108 PFU/mL. In light of its therapeutic effect on chicken diarrhea, YSP2 may serve as an alternative treatment strategy for infections caused by S. pullorum.

Keywords

Salmonella pullorum Bacteriophage Biological characteristics Therapy Chicken 

Notes

Acknowledgments

This work was supported by the National Key Research and Development Plan (No. 2016YFD0501307) and the National Natural Science Foundation of China (No. 3167130410).

Author contributions

Xin Feng conceived and designed the experiments. Kunyuan Tie, Yuyu Yuan, Shiqing Yan, Xi Yu, Qiuyang Zhang, Huihui Xu, and Yang Zhang performed the experiments. Kunyuan Tie, Yuyu Yuan, Shiqing Yan, and Huihui Xu contributed data analysis. Kunyuan Tie, Yuyu Yuan, and Xin Feng wrote the manuscript. Xin Feng, Jingmin Gu, Changjiang Sun, Liancheng Lei, and Wenyu Han revised the manuscript content. All authors have read and approved the submitted manuscript.

Compliance with ethical standards

Conflict of interest

All authors read and approved the final manuscript and declare no conflict of interest.

Ethical approval

All animal studies were conducted according to the National Guidelines for Experimental Animal Welfare (Ministry of Science and Technology of China, 2006) and approved by the Institutional Animal Care and Use Committee of Jilin University (IACUC). One-day-old chickens (purchased from the Experimental Animal Centre of Jilin University, Changchun, China) were housed in an air-conditioned animal facility with a 12-h light/dark cycle in the National Experimental Teaching Demonstration Centre of Jilin University (Changchun, China).

Supplementary material

11262_2018_1549_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)
11262_2018_1549_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 17 kb)
11262_2018_1549_MOESM3_ESM.docx (21 kb)
Supplementary material 3 (DOCX 20 kb)
11262_2018_1549_MOESM4_ESM.docx (266 kb)
Supplementary material 4 (DOCX 265 kb)
11262_2018_1549_MOESM5_ESM.docx (41 kb)
Supplementary material 5 (DOCX 40 kb)

References

  1. 1.
    P.A. Barrow, O.C.F. Neto, Avian Pathol. 40, 1–13 (2011)CrossRefPubMedGoogle Scholar
  2. 2.
    A. Berchieri, C.K. Murphy, K. Marston, P.A. Barrow, Avian Pathol. 30, 221–231 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    H.L. Shivaprasad, Rev. Sci. Tech. 19, 405–424 (2000)CrossRefPubMedGoogle Scholar
  4. 4.
    K. Aury, M. Chemaly, I. Petetin, S. Rouxel, M. Picherot, V. Michel, S. Le Bouquin, Prev. Vet. Med. 94, 84–93 (2010)CrossRefPubMedGoogle Scholar
  5. 5.
    W. Deng, Y. Quan, S. Yang, L. Guo, X. Zhang, S. Liu, S. Chen, K. Zhou, L. He, B. Li, Y. Gu, S. Zhao, L. Zou, Microb. Drug Resist. (2017).  https://doi.org/10.1089/mdr.2017.0127
  6. 6.
    P. Hyman, S.T. Abedon, Adv. Appl. Microbiol. 70, 217–248 (2010)CrossRefPubMedGoogle Scholar
  7. 7.
    O. Bergh, K.Y. Borsheim, G. Bratbak, M. Heldal, Nature 340, 467–468 (1989)CrossRefPubMedGoogle Scholar
  8. 8.
    S. O’Flaherty, R.P. Ross, A. Coffey, FEMS Microbiol. Rev. 33, 801–819 (2009)CrossRefPubMedGoogle Scholar
  9. 9.
    D. Vogt, S. Sperling, T. Tkhilaishvili, A. Trampuz, J.P. Pirnay, C. Willy, Der Unfallchirurg 120, 573–584 (2017)CrossRefPubMedGoogle Scholar
  10. 10.
    F. Eichenseher, Iheringia Sér Zool 99, 249–258 (2011)Google Scholar
  11. 11.
    R.J. Atterbury, P.L. Connerton, C.E. Dodd, C.E. Rees, I.F. Connerton, Appl. Environ. Microbiol. 69, 6302–6306 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    D. Goode, V.M. Allen, P.A. Barrow, Appl. Environ. Microbiol. 69, 5032–5036 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    J.P. Higgins, S.E. Higgins, K.L. Guenther, W. Huff, A.M. Donoghue, D.J. Donoghue, B.M. Hargis, Poult. Sci. 84, 1141–1145 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    L. Fiorentin, N.D. Vieira, W.B. Júnior, Rev. Bras. Ciênc. Avícol. 7, 34–49 (2005)Google Scholar
  15. 15.
    S. Hamdi, G.M. Rousseau, S.J. Labrie, D.M. Tremblay, R.S. Kourda, K. Ben Slama, S. Moineau, Sci. Rep.-UK 7, 40349 (2017)Google Scholar
  16. 16.
    L. Chen, H. Zhang, G. Liu, W. Sha, J. Appl. Genet. 57, 275–283 (2016)CrossRefPubMedGoogle Scholar
  17. 17.
    S. Wang, J. Gu, M. Lv, Z. Guo, G. Yan, L. Yu, C. Du, X. Feng, W. Han, C. Sun, L. Lei, J. Microbiol. 55, 403–408 (2017)CrossRefPubMedGoogle Scholar
  18. 18.
    H.C. Chang, C.R. Chen, J.W. Lin, G.H. Shen, K.M. Chang, Y.H. Tseng, S.F. Weng, Appl. Environ. Microb. 71, 1387–1393 (2005)CrossRefGoogle Scholar
  19. 19.
    L. Amarillas, C. Chaidez, A. González-Robles, J. León-Félix, Stand. Genomic Sci. 11, 89 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    S. Hamdi, G.M. Rousseau, S.J. Labrie, R.S. Kourda, D.M. Tremblay, S. Moineau, K.B. Slama, Front. Microbiol. 7, 1023 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Z. Cao, J. Zhang, Y.D. Niu, N. Cui, Y. Ma, F. Cao, L. Jin, Z. Li, Y. Xu, PLoS ONE 10, e116571 (2015)Google Scholar
  22. 22.
    M. Pajunen, S. Kiljunen, M. Skurnik, J. Bacteriol. 182, 5114–5120 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    P. Gong, M. Cheng, X. Li, H. Jiang, C. Yu, N. Kahaer, J. Li, L. Zhang, F. Xia, L. Hu, C. Sun, X. Feng, L. Lei, W. Han, J. Gu, Virology 492, 11–20 (2016)CrossRefPubMedGoogle Scholar
  24. 24.
    A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V.M. Lesin, S.I. Nikolenko, S. Pham, A.D. Prjibelski, A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, M.A. Alekseyev, P.A. Pevzner, J. Comput. Biol. 19, 455–477 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    P. Stothard, D.S. Wishart, Bioinformatics 21, 537–539 (2005)CrossRefPubMedGoogle Scholar
  26. 26.
    A.L. Delcher, D. Harmon, S. Kasif, O. White, S.L. Salzberg, Nucleic Acids Res. 27, 4636–4641 (1999)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Nucleic Acids Res. 25, 3389–3402 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    A.C. Darling, B. Mau, F.R. Blattner, N.T. Perna, Genome Res. 14, 1394–1403 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    K.P. Fung, T.W. Wong, J. Singap. Paediatr. Soc. 31, 129–132 (1989)Google Scholar
  30. 30.
    N. Sasaki, T. Matsumoto, Y. Ikenaka, A. Kazusaka, M. Ishizuka, S. Fujita, Pestic. Biochem. Physiol. 100, 135–139 (2011)CrossRefGoogle Scholar
  31. 31.
    H.W. Ackermann, Arch. Virol. 152, 227–243 (2007)CrossRefPubMedGoogle Scholar
  32. 32.
    M.M. Sundar, G.S. Nagananda, A. Das, S. Bhattacharya, S. Suryan, Asian J. Biotechnol. 1, 163–170 (2009)CrossRefGoogle Scholar
  33. 33.
    A. Bruttin, H. Brussow, Antimicrob. Agents Chemother. 49, 2874–2878 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    S. Hoe, D.D. Semler, A.D. Goudie, K.H. Lynch, S. Matinkhoo, W.H. Finlay, J.J. Dennis, R. Vehring, J. Aerosol. Med. Pulm. Drug Deliv. 26, 317–335 (2013)CrossRefPubMedGoogle Scholar
  35. 35.
    B. Biswas, Infect. Immun. 70, 204–210 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    S. Matsuzaki, M. Yasuda, H. Nishikawa, M. Kuroda, T. Ujihara, T. Shuin, Y. Shen, Z. Jin, S. Fujimoto, M.D. Nasimuzzaman, H. Wakiguchi, S. Sugihara, T. Sugiura, S. Koda, A. Muraoka, S. Imai, J. Infect. Dis. 187, 613–624 (2003)CrossRefPubMedGoogle Scholar
  37. 37.
    H.W. Smith, J.F. Tucker, J. Hyg. (Lond.) 75, 275–292 (1975)CrossRefGoogle Scholar
  38. 38.
    S. Waseh, P. Hanifi-Moghaddam, R. Coleman, M. Masotti, S. Ryan, M. Foss, R. MacKenzie, M. Henry, C.M. Szymanski, J. Tanha, PLoS ONE 5, e13904 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    F.R. Andreatti, J.P. Higgins, S.E. Higgins, G. Gaona, A.D. Wolfenden, G. Tellez, B.M. Hargis, Poult. Sci. 86, 1904–1909 (2007)CrossRefGoogle Scholar
  40. 40.
    M.A. Uhl, J.F. Miller, The EMBO Journal 15, 1028–1036 (1996)PubMedPubMedCentralGoogle Scholar
  41. 41.
    L.A. Marraffini, E.J. Sontheimer, Science 322, 1843 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    B.K. Chan, S.T. Abedon, Adv. Appl. Microbiol. 78, 1–23 (2012)CrossRefPubMedGoogle Scholar
  43. 43.
    K. Bush, P. Courvalin, G. Dantas, J. Davies, B. Eisenstein, P. Huovinen, G.A. Jacoby, R. Kishony, B.N. Kreiswirth, E. Kutter, S.A. Lerner, S. Levy, K. Lewis, O. Lomovskaya, J.H. Miller, S. Mobashery, L.J.V. Piddock, S. Projan, C.M. Thomas, A. Tomasz, P.M. Tulkens, T.R. Walsh, J.D. Watson, J. Witkowski, W. Witte, G. Wright, P. Yeh, H.I. Zgurskaya, Nat. Rev. Microbiol. 9, 894–896 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    V. Krylov, O. Shaburova, S. Krylov, E. Pleteneva, Viruses 5, 15–53 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Veterinary MedicineJilin UniversityChangchunPeople’s Republic of China
  2. 2.College of Life Science and TechnologyDalian University of TechnologyDalianPeople’s Republic of China
  3. 3.College of Animal ScienceJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations