Advertisement

Virus Genes

, Volume 54, Issue 3, pp 333–342 | Cite as

Functional analysis of amino acids at stalk/head interface of human parainfluenza virus type 3 hemagglutinin-neuraminidase protein in the membrane fusion process

  • Jingjing Jiang
  • Hongling Wen
  • Miaomiao Chi
  • Ying Liu
  • Jingxue Liu
  • Zhankui Cao
  • Li Zhao
  • Yanyan Song
  • Na Liu
  • Lianli Chi
  • Zhiyu WangEmail author
Article

Abstract

Human parainfluenza virus type 3 (hPIV3) is an important respiratory pathogen that causes the majority of viral pneumonia of infants and young children. hPIV3 can infect host cells through the synergistic action of hemagglutinin-neuraminidase (HN) protein and the homotypic fusion (F) protein on the viral surface. HN protein plays a variety of roles during the virus invasion process, such as promoting viral particles to bind to receptors, cleaving sialic acid, and activating the F protein. Crystal structure research shows that HN tetramer adopted a “heads-down” conformation, at least two heads dimmer on flank of the four-helix bundle stalk, which forms a symmetrical interaction interface. The stalk region determines interactions and activation of F protein in specificity, and the heads in down position statically shield these residues. In order to make further research on the function of these amino acids at the hPIV3 HN stalk/head interface, fifteen mutations (8 sites from stalk and 7 sites from head) were engineered into this interface by site-directed mutagenesis in this study. Alanine substitution in this region of hPIV3 HN had various effects on cell fusion promotion, receptor binding, and neuraminidase activity. Besides, L151A also affected surface protein expression efficiency. Moreover, I112A, D120A, and R122A mutations of the stalk region that were masked by global head in down position had influence on the interaction between F and HN proteins.

Keywords

Human parainfluenza virus type 3 Hemagglutinin-neuraminidase protein Stalk/head interface Mutations Membrane fusion 

Notes

Acknowledgements

We gratefully acknowledge Dr. Ronald Iorio for providing the recombinant plasmid vectors and Dr. Bernard Moss for vTF7-3.

Author contributions

JJ performed all parts of experiments and wrote the manuscript. MC and YL helped in experimental design, JL and ZC helped in the analysis of the results. HW, LZ, YS, NL, and LC supervised this study. ZW directed the experiments and revised the manuscript.

Funding

This work was supported by a Grant from National Natural Science Foundation of China (No. 81672011) and the Fundamental Research Funds of Shandong University (2015JC044).

Compliance with ethical standards

Conflicts of interest

All authors in this paper declare they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

Present paper does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    M.V. Villaran, J. Garcia, J. Gomez, A.E. Arango, M. Gonzales, W. Chicaiza, W. Aleman, I. Lorenzana de Rivera, F. Sanchez, N. Aguayo, T.J. Kochel, E.S. Halsey, Influenza Respir. Viruses 8, 217–227 (2014)CrossRefGoogle Scholar
  2. 2.
    M.E. Counihan, D.K. Shay, R.C. Holman, S.A. Lowther, L.J. Erson, Pediatr. Infect. Dis. J. 20, 646–653 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    K.J. Henrickson, Clin. Microbiol. Rev. 16, 242–264 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    S. Bose, C.M. Heath, P.A. Shah, M. Alayyoubi, T.S. Jardetzky, R.A. Lamb, J. Virol. 87, 13520–13531 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    N.G. Xiao, Z.J. Duan, Z.P. Xie, L.L. Zhong, S.Z. Zeng, H. Huang, H.C. Gao, B. Zhang, J. Med. Virol. 88, 2085–2091 (2016)CrossRefPubMedGoogle Scholar
  6. 6.
    R. Xu, S.G. Palmer, M. Porotto, L.M. Palermo, S. Niewiesk, I.A. Wilson, A. Moscona, mBio 4, e00803–e00813 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    C. Godoy, P. Peremiquel-Trillas, C. Andrés, L. Gimferrer, S.M. Uriona, M.G. Codina, L. Armadans, M.D.C. Martín, F. Fuentes, J. Esperalba, M. Campins, T. Pumarola, A. Antón, Diagn. Microbiol. Infect. Dis. 86, 153–159 (2016)CrossRefPubMedGoogle Scholar
  8. 8.
    A.C. Schmidt, A. Schaap-Nutt, E.J. Bartlett, H. Schomacker, J. Boonyaratanakornkit, R.A. Karron, P.L. Collins, Exp. Rev. Respir. Med. 5, 515–526 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Porotto, S.G. Palmer, L.M. Palermo, A. Moscona, J. Biol. Chem. 287, 778–793 (2012)CrossRefPubMedGoogle Scholar
  10. 10.
    T.S. Jardetzky, R.A. Lamb, Curr. Opin. Virol. 5, 24–33 (2014)CrossRefPubMedGoogle Scholar
  11. 11.
    L. Gui, E.M. Jurgens, J.L. Ebner, M. Porotto, A. Moscona, K.K. Lee, MBio 6, e02393-02314 (2015)CrossRefGoogle Scholar
  12. 12.
    M.C. Lawrence, N.A. Borg, V.A. Streltsov, P.A. Pilling, V.C. Epa, J.N. Varghese, J.L. McKimm-Breschkin, P.M. Colman, J. Mol. Biol. 335, 1343–1357 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    R.A. Lamb, R.G. Paterson, T.S. Jardetzky, Virology 344, 30–37 (2006)CrossRefPubMedGoogle Scholar
  14. 14.
    P. Yuan, K.A. Swanson, G.P. Leser, R.G. Paterson, R.A. Lamb, T.S. Jardetzky, Proc. Natl. Acad. Sci. USA 108, 14920–14925 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    B.D. Welch, P. Yuan, S. Bose, C.A. Kors, R.A. Lamb, T.S. Jardetzky, PLoS Pathog. 9, e1003534 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    T.R. Fuerst, E.G. Niles, F.W. Studier, B. Moss, Proc. Natl. Acad. Sci. USA 83, 8122–8126 (1986)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    C. Sun, H. Wen, Y. Chen, F. Chu, B. Lin, G. Ren, Y. Song, Z. Wang, BioSci Trends 9, 56–64 (2015)CrossRefPubMedGoogle Scholar
  18. 18.
    G. Ren, Z. Wang, X. Hu, Intervirology 50, 115–122 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    F.L. Chu, H.L. Wen, G.H. Hou, B. Lin, W.Q. Zhang, Y.Y. Song, G.J. Ren, C.X. Sun, Z.M. Li, Z. Wang, Virus Res. 174, 137–147 (2013)CrossRefPubMedGoogle Scholar
  20. 20.
    W. Xie, H. Wen, F. Chu, S. Yan, B. Lin, W. Xie, Y. Liu, G. Ren, L. Zhao, Y. Song, C. Sun, Z. Wang, PLoS ONE 10, e0136474 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    E. Adu-Gyamfi, L.S. Kim, T.S. Jardetzky, R.A. Lamb, J. Virol. 90, 7778–7788 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    E. Adu-Gyamfi, L.S. Kim, T.S. Jardetzky, R.A. Lamb, J. Virol. 90, 9172–9181 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    P. Yuan, T.B. Thompson, B.A. Wurzburg, R.G. Paterson, R.A. Lamb, T.S. Jardetzky, Structure 13, 803–815 (2005)CrossRefPubMedGoogle Scholar
  24. 24.
    V.A. Streltsov, P. Pilling, S. Barrett, J.L. McKimm-Breschkin, Antiviral Res. 123, 216–223 (2015)CrossRefPubMedGoogle Scholar
  25. 25.
    S.A. Connolly, G.P. Leser, T.S. Jardetzky, R.A. Lamb, J. Virol. 83, 10857–10868 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    C.K. Navaratnarajah, N. Oezguen, L. Rupp, L. Kay, V.H. Leonard, W. Braun, R. Cattaneo, Nat. Struct. Mol. Biol. 18, 128–134 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    A. Chang, R.E. Dutch, Viruses 4, 613–636 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    S. Bose, A. Zokarkar, B.D. Welch, G.P. Leser, T.S. Jardetzky, R.A. Lamb, Proc. Natl. Acad. Sci. 109, E2625–E2634 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    T. Hashiguchi, T. Ose, M. Kubota, N. Maita, J. Kamishikiryo, K. Maenaka, Y. Yanagi, Nat. Struct. Mol. Biol. 18, 135–141 (2011)CrossRefPubMedGoogle Scholar
  30. 30.
    M.A. Brindley, R. Suter, I. Schestak, G. Kiss, E.R. Wright, R.K. Plemper, J. Virol. 87, 11693–11703 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    V.R. Melanson, R.M. Iorio, J. Virol. 80, 623–633 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    M.M. Tappert, J.Z. Porterfield, P. Mehta-D’Souza, S. Gulati, G.M. Air, J. Virol. 87, 8962–8970 (2013)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Virology, School of Public HealthShandong UniversityJinanChina
  2. 2.State Key Laboratory of Microbial Technology, National Glycoengineering Research CenterShandong UniversityJinanChina
  3. 3.The Key Laboratory for Experimental Teratology of the Ministry of EducationShandong UniversityJinanChina

Personalised recommendations