Advertisement

Virus Genes

, Volume 54, Issue 3, pp 368–375 | Cite as

Non-structural protein 1 from avian influenza virus H9N2 is an efficient RNA silencing suppressor with characteristics that differ from those of Tomato bushy stunt virus p19

  • Ru Yu
  • Xiuli Jing
  • Wenjing Li
  • Jie Xu
  • Yang Xu
  • Liwei Geng
  • Changxiang Zhu
  • Hongmei LiuEmail author
Article

Abstract

Non-structural protein 1 (NS1) of influenza A virus is a multifunctional dimeric protein that contains a conserved N-terminal RNA binding domain. Studies have shown that NS1 suppresses RNA silencing and the NS1 proteins encoded by different influenza A virus strains exhibit differential RNA silencing suppression activities. In this study, we showed that the NS1 protein from avian influenza virus (AIV) H9N2 suppressed systemic RNA silencing induced by sense RNA or dsRNA. It resulted in more severe Potato virus X symptom, but could not reverse established systemic green fluorescent protein silencing in Nicotiana benthamiana. In addition, its systemic silencing suppression activity was much weaker than that of p19. The local silencing suppression activity of AIV H9N2 NS1 was most powerful at 7 dpi and was even stronger than that of p19. And the inhibition ability to RNA silencing of NS1 is stronger than that of p19 in human cells. Collectively, these results indicate that AIV H9N2 NS1 is an effective RNA silencing suppressor that likely targets downstream step(s) of dsRNA formation at an early stage in RNA silencing. Although NS1 and p19 both bind siRNA, their suppression mechanisms seem to differ because of differences in their suppression activities at various times post-infiltration and because p19 can reverse established systemic RNA silencing, but NS1 cannot.

Keywords

Avian influenza virus RNA silencing suppressor NS1 H9N2 p19 

Notes

Acknowledgements

We thank Prof. David Baulcombe for providing N. benthamiana 16c seeds and the p19 gene and Prof. Zhizhong Cui for providing the avian influenza virus H9N2 strain. And thanks are due to Dr. Zizhang Zhou and Dr. Haifang Li for the assistance in animal experiments. This work was supported by grants from the Natural Science Foundation of Shandong Province [ZR2015CM018] and National Natural Science Foundation of China [31272113 and 31300730].

Author contributions

RY and XJ performed the main experiments and edited the paper; CZ participated in experimental design; JX, WL, YX, and LG were involved in executing the study; HL guided the execution of the study and revised the paper.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Human and animal consent

The research described in the paper does not use any human or animal subjects.

References

  1. 1.
    S.W. Ding, Nat. Rev. Immunol. 10, 632–644 (2010)CrossRefPubMedGoogle Scholar
  2. 2.
    D. Baulcombe, Trends Microbiol. 10, 306–308 (2002)CrossRefPubMedGoogle Scholar
  3. 3.
    W.X. Li, S.W. Ding, Curr. Opin. Biotechnol. 12, 150–154 (2001)CrossRefPubMedGoogle Scholar
  4. 4.
    L. Lakatos, T. Csorba, V. Pantaleo, E.J. Chapman, J.C. Carrington, Y.P. Liu, V.V. Dolja, L.F. Calvino, J.J. Lopez-Moya, J. Burgyan, EMBO J. 25, 2768–2780 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Z. Merai, Z. Kerenyi, S. Kertesz, M. Magna, L. Lakatos, D. Silhavy, J. Virol. 80, 5747–5756 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    K. Goto, T. Kobori, Y. Kosaka, T. Natsuaki, C. Masuta, Plant Cell Physiol. 48, 1050–1060 (2007)CrossRefPubMedGoogle Scholar
  7. 7.
    S. Hamera, X. Song, L. Su, X. Chen, R. Fang, Plant J. 69, 104–115 (2012)CrossRefPubMedGoogle Scholar
  8. 8.
    X. Zhang, Y.R. Yuan, Y. Pei, S.S. Lin, T. Tuschl, D.J. Patel, N.H. Chua, Genes Dev. 20, 3255–3268 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    H. Li, W.X. Li, S.W. Ding, Science 296, 1319–1321 (2002)CrossRefPubMedGoogle Scholar
  10. 10.
    W.X. Li, H. Li, R. Lu, F. Li, M. Dus, P. Atkinson, E.W. Brydon, K.L. Johnson, A. Garcia-Sastre, L.A. Ball, P. Palese, S.W. Ding, Proc Natl. Acad. Sci. USA 101, 1350–1355 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    J.A. Richt, A. Garcia-Sastre, Curr. Top. Microbiol. Immunol. 333, 177–195 (2009)PubMedGoogle Scholar
  12. 12.
    S.H. Seo, E. Hoffmann, R.G. Webster, Virus Res. 103, 107–113 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    J.J. Skehel, Virology 49, 23–36 (1972)CrossRefPubMedGoogle Scholar
  14. 14.
    T. Horimoto, Y. Kawaoka, Nat. Rev. Microbiol. 3, 591–600 (2005)CrossRefPubMedGoogle Scholar
  15. 15.
    J.C. Obenauer, J. Denson, P.K. Mehta, X. Su, S. Mukatira, D.B. Finkelstein, X. Xu, J. Wang, J. Ma, Y. Fan, K.M. Rakestraw, R.G. Webster, E. Hoffmann, S. Krauss, J. Zheng, Z. Zhang, C.W. Naeve, Science 311, 1576–1580 (2006)CrossRefPubMedGoogle Scholar
  16. 16.
    V. Balme-Sinibaldi, M. Tribodet, F. Croizat, P. Lefeuvre, C. Kerlan, E. Jacquot, J. Virol. Methods 134, 261–266 (2006)CrossRefPubMedGoogle Scholar
  17. 17.
    D. Lin, J. Lan, Z. Zhang, Acta Biochim. Biophys. Sin. 39, 155–162 (2007)CrossRefPubMedGoogle Scholar
  18. 18.
    M.O. Delgadillo, P. Saenz, B. Salvador, J.A. Garcia, C. Simon-Mateo, J. Gen. Virol. 85, 993–999 (2004)CrossRefPubMedGoogle Scholar
  19. 19.
    V.I. Maliogka, M. Calvo, A. Carbonell, J.A. Garcia, A. Valli, J. Gen. Virol. 93, 1601–1611 (2012)CrossRefPubMedGoogle Scholar
  20. 20.
    J. Brask, A. Chauhan, R.H. Hill, H.G. Ljunggren, K. Kristensson, J. Neurovirol. 11, 395–402 (2005)CrossRefPubMedGoogle Scholar
  21. 21.
    K. Melen, L. Kinnunen, R. Fagerlund, N. Ikonen, K.Y. Twu, R.M. Krug, I. Julkunen, J. Virol. 81, 5995–6006 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    E.M. Kennedy, A.W. Whisnant, A.V. Kornepati, J.B. Marshall, H.P. Bogerd, B.R. Cullen, Proc. Natl. Acad. Sci. USA 112, E6945–E6954 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Y. Li, M. Basavappa, J. Lu, S. Dong, D.A. Cronkite, J.T. Prior, H.C. Reinecker, P. Hertzog, Y. Han, W.X. Li, S. Cheloufi, F.V. Karginov, S.W. Ding, K.L. Jeffrey, Nat. Microbiol. 2, 16250 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    A. Cheng, S.M. Wong, Y.A. Yuan, Cell Res. 19, 187–195 (2009)CrossRefPubMedGoogle Scholar
  25. 25.
    X. Jing, J. Xu, M. Fan, L. Ma, X. Huang, X. Wang, S. Sun, C. Zhu, H. Liu, J. Gen. Virol. 96, 1613–1618 (2015)CrossRefPubMedGoogle Scholar
  26. 26.
    X.L. Jing, M.N. Fan, G. Jia, L.W. Liu, L. Ma, C.C. Zheng, X.P. Zhu, H.M. Liu, X.Y. Wang, J. Virol. 85, 12792–12803 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    W. de Vries, J. Haasnoot, R. Fouchier, P. de Haan, B. Berkhout, J. Gen. Virol. 90, 1916–1922 (2009)CrossRefPubMedGoogle Scholar
  28. 28.
    M. Munir, S. Zohari, M. Iqbal, M. Abbas, D.R. Perez, M. Berg, Virulence 4, 612–623 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    E. Bucher, H. Hemmes, P. de Haan, R. Goldbach, M. Prins, J. Gen. Virol. 85, 983–991 (2004)CrossRefPubMedGoogle Scholar
  30. 30.
    G. Brigneti, O. Voinnet, W.X. Li, L.H. Ji, S.W. Ding, D.C. Baulcombe, EMBO J. 17, 6739–6746 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    H.B. Scholthof, Nat. Rev. Microbiol. 4, 405–411 (2006)CrossRefPubMedGoogle Scholar
  32. 32.
    D. Silhavy, J. Burgyan, Trends Plant Sci. 9, 76–83 (2004)CrossRefPubMedGoogle Scholar
  33. 33.
    D. Silhavy, A. Molnar, A. Lucioli, G. Szittya, C. Hornyik, M. Tavazza, J. Burgyan, EMBO J. 21, 3070–3080 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    R.P. van Rij, M.C. Salch, B. Berry, C. Foo, A. Houk, C. Antoniewski, R. Andino, Genes Dev. 20, 2985–2995 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    K. Ye, L. Malinina, D.J. Patel, Nature 426, 874–878 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    X. Chen, Annu. Rev. Cell Dev. Biol. 25, 21–44 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    C.A. Sledz, M. Holko, M.J. de Veer, R.H. Silverman, B.R. Williams, Nat. Cell Biol. 5, 834–839 (2003)CrossRefPubMedGoogle Scholar
  38. 38.
    A.J. Bridge, S. Pebernard, A. Ducraux, A.L. Nicoulaz, R. Iggo, Nat. Genet. 34, 263–264 (2003)CrossRefPubMedGoogle Scholar
  39. 39.
    D. Jackson, M.J. Hossain, D. Hickman, D.R. Perez, R.A. Lamb, Proc. Natl. Acad. Sci. USA 105, 4381–4386 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    S.H. Seo, E. Hoffmann, R.G. Webster, Nat. Med. 8, 950–954 (2002)CrossRefPubMedGoogle Scholar
  41. 41.
    J. Haasnoot, W. de Vries, E.J. Geutjes, M. Prins, P. de Haan, B. Berkhout, PLoS Pathog. 3, E86 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    S.K. Dankar, S. Wang, J. Ping, N.E. Forbes, L. Keleta, Y. Li, E.G. Brown, J. Virol. 8, 13 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anChina
  2. 2.Institute of ImmunologyTaishan Medical UniversityTai’anChina

Personalised recommendations