Advertisement

Virus Genes

, Volume 53, Issue 4, pp 573–583 | Cite as

Rescue of a wild-type rabies virus from cloned cDNA and assessment of the proliferative capacity of recombinant viruses

  • Qin Tian
  • Yifei Wang
  • Qiong Zhang
  • Jun Luo
  • Mingzhu Mei
  • Yongwen Luo
  • Xiaofeng GuoEmail author
Article

Abstract

Reverse genetic systems (RGS) have been widely used for fixed rabies virus (RABV) strains. However, RGS, for wild-type (wt) strains, have been seldom reported despite the value of this approach in defining the biological characteristics of these strains. In this work, we developed a wt RGS using a swine-origin RABV strain (GD-SH-01) for the first time. In order to have a better understanding of the contribution and function of individual gene on viral proliferation for wt RABV isolates, we constructed a full-length cDNA clone of GD-SH-01 and exchanged the single genes encoding RABV protein of a highly attenuated RABV strain HEP-Flury with those of the virulent strain. Analysis of the viral growth kinetics, cell-to-cell spread, and genomic RNA (gRNA) synthesis of the both the rescued and parental virus strains revealed that replacement of the HEP-Flury N or L genes with those from GD-SH-01 resulted in higher proliferative capacity of both chimeric rHEP-shN and rHEP-shL while the former seemed to have a better viral gRNA synthesis ability, the latter spread faster. Replacement of HEP-Flury P gene with GD-SH-01 P gene resulted in reduction of the virus titer in cell culture supernatants with a poor replicative and spreading ability. However, replacement of HEP-Flury M or G genes with those from GD-SH-01 seemed to impact less on viral proliferation. Taken together, we show that we have successfully rescued a wt RABV strain, and assessed the impact of each gene on viral proliferative capacity using a series of single-gene-substituted viruses.

Keywords

Rabies virus Reverse genetic system Gene substitution Viral proliferation 

Notes

Acknowledgements

We thank the Guangdong Haid Institute of Animal Husbandry and Veterinary for the support of instruments. This study was partially supported by National Nature Science Foundation of China (No.31172322), Nature Science Foundation of Guangdong (No.2015A03031103) and the National Key Research and Development Program of China (No. 2016YF D0500400).

Author’s contribution

XFG, YFW, and QT conceived the study; QT, YFW, QZ, JL, and MZM performed the research; QT, YFW, QZ, and JL analyzed data; QT, YFW, XFG, and YWL wrote the manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    World Health Organization, World Health Organ. Tech. Rep. Ser. 949, xii (2010).Google Scholar
  2. 2.
    Z.F. Fu, Vaccine 15(Suppl), S20–S24 (1997)CrossRefPubMedGoogle Scholar
  3. 3.
    Z.F. Fu, A.C. Jackson, J Neurovirol. 11, 101–106 (2005)CrossRefPubMedGoogle Scholar
  4. 4.
    A.C. Jackson, Journal of neurovirology 9, 253–258 (2003)CrossRefPubMedGoogle Scholar
  5. 5.
    N. Tordo, O. Poch, A. Ermine, G. Keith, Nucl. Acids Res. 14, 2671–2683 (1986)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    A.A. Albertini, R.W. Ruigrok, D. Blondel, Adv. Virus Res. 79, 1 (2011)CrossRefPubMedGoogle Scholar
  7. 7.
    A. Okumura, R.N. Harty, Adv. Imaging Electron Phys. 79, 23–32 (2011)Google Scholar
  8. 8.
    M.J. Schnell, T. Mebatsion, K.-K. Conzelmann, EMBO J. 13, 4195 (1994)PubMedPubMedCentralGoogle Scholar
  9. 9.
    K.-I. Inoue, Y. Shoji, I. Kurane, T. Iijima, T. Sakai, K. Morimoto, J. Virol. Methods 107, 229–236 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    M. Takayamaito, K. Inoue, Y. Shoji, S. Inoue, T. Iijima, T. Sakai, I. Kurane, K. Morimoto, Virus Res. 119, 208–215 (2006)CrossRefGoogle Scholar
  11. 11.
    X. Wu, C.E. Rupprecht, Virus Res. 131, 95–99 (2008)CrossRefPubMedGoogle Scholar
  12. 12.
    J. Wenqiang, X. Yin, X. Lan, X. Li, J. Liu, Adv. Virol. 159, 1033–1038 (2014)Google Scholar
  13. 13.
    M. Faber, R. Pulmanausahakul, K. Nagao, M. Prosniak, A.B. Rice, H. Koprowski, M.J. Schnell, B. Dietzschold, Proc. Natl. Acad. Sci. USA 101, 16328–16332 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    J. Park, C. Kim, J. Um, Y.R. Ju, Y.S. Lee, Y. Choi, S.Y. Kim, Virus Res. 223, 122–130 (2016)CrossRefPubMedGoogle Scholar
  15. 15.
    H. Koprowski, J. Black, D.J. Nelsen, J. Immunol. 72, 94–106 (1954)PubMedGoogle Scholar
  16. 16.
    Y. Luo, Y. Zhang, X. Liu, Y. Yang, X. Yang, D. Zhang, X. Deng, X. Wu, X. Guo, J. Virol. 86, 12454–12455 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Y. Luo, Y. Zhang, X. Liu, Y. Yang, X. Yang, Z. Zheng, X. Deng, X. Wu, X. Guo, Infection. Genet. Evol. 17, 147–152 (2013)CrossRefGoogle Scholar
  18. 18.
    X. Yang, J. Peng, H. Liang, Y. Yang, Y. Wang, X. Wu, J. Pan, Y. Luo, X. Guo, VirusDisease 25, 365–371 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    J. Luo, H. Shi, Y. Tan, X. Niu, T. Long, J. Zhao, Q. Tian, Y. Wang, H. Chen, X. Guo, Vaccine 34, 4392–4398 (2016)CrossRefPubMedGoogle Scholar
  20. 20.
    Y. Wang, Q. Tian, X. Xu, X. Yang, J. Luo, W. Mo, J. Peng, X. Niu, Y. Luo, X. Guo, Virology 468–470, 621–630 (2014)CrossRefPubMedGoogle Scholar
  21. 21.
    K. Morimoto, H.D. Foley, J.P. Mcgettigan, M.J. Schnell, B. Dietzschold, J. NeuroVirol. 6, 373 (2000)CrossRefPubMedGoogle Scholar
  22. 22.
    M. Mei, T. Long, Q. Zhang, J. Zhao, Q. Tian, J. Peng, J. Luo, Y. Wang, Y. Lin, X. Guo, Front. Microbiol. 8, 120 (2017)PubMedPubMedCentralGoogle Scholar
  23. 23.
    J. Luo, J. Zhao, Q. Tian, W. Mo, Y. Wang, H. Chen, X. Guo, Virus Genes 52, 379–387 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    L. Zhao, H. Toriumi, H. Wang, Y. Kuang, X. Guo, K. Morimoto, Z.F. Fu, J. Virol. 84, 9642–9648 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    X. Liu, Y. Yang, Z. Sun, J. Chen, J. Ai, C. Dun, Z.F. Fu, X. Niu, X. Guo, PLoS One 9, e87105 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    N. Ito, M. Takayamaito, K. Yamada, J. Hosokawa, M. Sugiyama, N. Minamoto, Microbiol. Immunol. 47, 613–617 (2003)CrossRefPubMedGoogle Scholar
  27. 27.
    N. Ito, M. Takayama, K. Yamada, M. Sugiyama, N. Minamoto, J. Virol. 75, 9121–9128 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    H. Arnheiter, N.L. Davis, G. Wertz, M. Schubert, R.A. Lazzarini, Cell 41, 259–267 (1985)CrossRefPubMedGoogle Scholar
  29. 29.
    S. Cudmore, I. Reckmann, M. Way, Trends Microbiol. 5, 142–148 (1997)CrossRefPubMedGoogle Scholar
  30. 30.
    K.O. Simon, P. Whitakerdowling, J.S. Youngner, C.C. Widnell, Virology 177, 289–297 (1990)CrossRefPubMedGoogle Scholar
  31. 31.
    W. Mothes, N.M. Sherer, J. Jin, P. Zhong, J. Virol. 84, 8360–8368 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    B. Dietzschold, T.J. Wiktor, J.Q. Trojanowski, R.I. Macfarlan, W.H. Wunner, M.J. Torresanjel, H. Koprowski, J. Virol. 56, 12–18 (1985)PubMedPubMedCentralGoogle Scholar
  33. 33.
    Y. Ito, N. Ito, S. Saito, T. Masatani, K. Nakagawa, Y. Atoji, M. Sugiyama, Microbiol. Immunol. 54, 89–97 (2010)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Qin Tian
    • 1
    • 2
  • Yifei Wang
    • 1
    • 2
  • Qiong Zhang
    • 1
    • 2
  • Jun Luo
    • 1
    • 2
  • Mingzhu Mei
    • 1
    • 2
  • Yongwen Luo
    • 1
    • 2
  • Xiaofeng Guo
    • 1
    • 2
    Email author
  1. 1.College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Zoonosis Prevention and Control of Guangdong ProvinceGuangzhouPeople’s Republic of China

Personalised recommendations