Skip to main content
Log in

Insights into Jumonji C-domain containing protein 6 (JMJD6): a multifactorial role in foot-and-mouth disease virus replication in cells

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The Jumonji C-domain containing protein 6 (JMJD6) has had a convoluted history, and recent reports indicating a multifactorial role in foot-and-mouth disease virus (FMDV) infection have further complicated the functionality of this protein. It was first identified as the phosphatidylserine receptor on the cell surface responsible for recognizing phosphatidylserine on the surface of apoptotic cells resulting in their engulfment by phagocytic cells. Subsequent study revealed a nuclear subcellular localization, where JMJD6 participated in lysine hydroxylation and arginine demethylation of histone proteins and other non-histone proteins. Interestingly, to date, JMDJ6 remains the only known arginine demethylase with a growing list of known substrate molecules. These conflicting associations rendered the subcellular localization of JMJD6 to be quite nebulous. Further muddying this area, two different groups illustrated that JMJD6 could be induced to redistribute from the cell surface to the nucleus of a cell. More recently, JMJD6 was demonstrated to be a host factor contributing to the FMDV life cycle, where it was not only exploited for its arginine demethylase activity, but also served as an alternative virus receptor. This review attempts to coalesce these divergent roles for a single protein into one cohesive account. Given the diverse functionalities already characterized for JMJD6, it is likely to continue to be a confounding protein resulting in much contention going into the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Hou, H. Yu, Structural insights into histone lysine demethylation. Curr. Opin. Struct. Biol. 20, 739–748 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. T.B. Nicholson, T. Chen, LSD1 demethylates histone and non-histone proteins. Epigenetics 4, 129–132 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. S.M. Hensen, G.J. Pruijn, Methods for the detection of peptidylarginine deiminase (PAD) activity and protein citrullination. Mol. Cell. Proteomics 13, 388–396 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. B. Chang, Y. Chen, Y. Zhao, R.K. Bruick, JMJD6 is a histone arginine demethylase. Science 318, 444–447 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. J. Motoyama, T. Takeuchi, The mouse embryogenesis of jumonji mutant obtained by gene-trap method. Tanpakushitsu Kakusan Koso 40, 2152–2161 (1995)

    CAS  PubMed  Google Scholar 

  6. T. Takeuchi, Y. Yamazaki, Y. Katoh-Fukui, R. Tsuchiya, S. Kondo, J. Motoyama, T. Higashinakagawa, Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 9, 1211–1222 (1995)

    Article  CAS  PubMed  Google Scholar 

  7. M. Cikala, O. Alexandrova, C.N. David, M. Proschel, B. Stiening, P. Cramer, A. Bottger, The phosphatidylserine receptor from Hydra is a nuclear protein with potential Fe(II) dependent oxygenase activity. BMC Cell Biol. 5, 26 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  8. A. Wolf, M. Mantri, A. Heim, U. Muller, E. Fichter, M.M. Mackeen, L. Schermelleh, G. Dadie, H. Leonhardt, C. Venien-Bryan, B.M. Kessler, C.J. Schofield, A. Bottger, The polyserine domain of the lysyl-5 hydroxylase Jmjd6 mediates subnuclear localization. Biochem. J. 453, 357–370 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. P. Cui, B. Qin, N. Liu, G. Pan, D. Pei, Nuclear localization of the phosphatidylserine receptor protein via multiple nuclear localization signals. Exp. Cell Res. 293, 154–163 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. H. Yang, Y.Z. Chen, Y. Zhang, X. Wang, X. Zhao, J.I. Godfroy 3rd, Q. Liang, M. Zhang, T. Zhang, Q. Yuan, M. Ann Royal, M. Driscoll, N.S. Xia, H. Yin, D. Xue, A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells. Nat. Commun. 6, 5717 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. Hahn, J. Bose, S. Edler, A. Lengeling, Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins. BMC Genom. 9, 293 (2008)

    Article  Google Scholar 

  12. V.A. Fadok, D.L. Bratton, D.M. Rose, A. Pearson, R.A. Ezekewitz, P.M. Henson, A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. V.A. Fadok, A. de Cathelineau, D.L. Daleke, P.M. Henson, D.L. Bratton, Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276, 1071–1077 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. V.A. Fadok, D. Xue, P. Henson, If phosphatidylserine is the death knell, a new phosphatidylserine-specific receptor is the bellringer. Cell Death Differ. 8, 582–587 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. P. Lawrence, J. Pacheco, C. Stenfeldt, J. Arzt, D.K. Rai, E. Rieder, Pathogenesis and micro-anatomic characterization of a cell-adapted mutant foot-and-mouth disease virus in cattle: impact of the Jumonji C-domain containing protein 6 (JMJD6) and route of inoculation. Virology 492, 108–117 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. P. Lawrence, D. Rai, J.S. Conderino, S. Uddowla, E. Rieder, Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus. Virology 492, 38–52 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. P. Lawrence, J.S. Conderino, E. Rieder, Redistribution of demethylated RNA helicase A during foot-and-mouth disease virus infection: role of Jumonji C-domain containing protein 6 in RHA demethylation. Virology 452–453, 1–11 (2014)

    Article  PubMed  Google Scholar 

  18. A. Yamaji-Hasegawa, M. Tsujimoto, Asymmetric distribution of phospholipids in biomembranes. Biol. Pharm. Bull. 29, 1547–1553 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. V.A. Fadok, D.L. Bratton, S.C. Frasch, M.L. Warner, P.M. Henson, The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5, 551–562 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. P.R. Hoffmann, A.M. deCathelineau, C.A. Ogden, Y. Leverrier, D.L. Bratton, D.L. Daleke, A.J. Ridley, V.A. Fadok, P.M. Henson, Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J. Cell Biol. 155, 649–659 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. X. Wang, Y.C. Wu, V.A. Fadok, M.C. Lee, K. Gengyo-Ando, L.C. Cheng, D. Ledwich, P.K. Hsu, J.Y. Chen, B.K. Chou, P. Henson, S. Mitani, D. Xue, Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 302, 1563–1566 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. T.Y. Hsu, Y.C. Wu, Engulfment of apoptotic cells in C. elegans is mediated by integrin alpha/SRC signaling. Curr. Biol. 20, 477–486 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. X. Wang, C. Yang, Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. Cell. Mol. Life Sci. 73, 2221–2236 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. A.C. Tosello-Trampont, J.M. Kinchen, E. Brugnera, L.B. Haney, M.O. Hengartner, K.S. Ravichandran, Identification of two signaling submodules within the CrkII/ELMO/Dock180 pathway regulating engulfment of apoptotic cells. Cell Death Differ. 14, 963–972 (2007)

    CAS  PubMed  Google Scholar 

  25. J.R. Hong, G.H. Lin, C.J. Lin, W.P. Wang, C.C. Lee, T.L. Lin, J.L. Wu, Phosphatidylserine receptor is required for the engulfment of dead apoptotic cells and for normal embryonic development in zebrafish. Development 131, 5417–5427 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. H.C. Kung, O. Evensen, J.R. Hong, C.Y. Kuo, C.H. Tso, F.H. Ngou, M.W. Lu, J.L. Wu, Interferon regulatory factor-1 (IRF-1) is involved in the induction of phosphatidylserine receptor (PSR) in response to dsRNA virus infection and contributes to apoptotic cell clearance in CHSE-214 cell. Int. J. Mol. Sci. 15, 19281–19306 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  27. P.M. Henson, D.L. Bratton, V.A. Fadok, The phosphatidylserine receptor: a crucial molecular switch? Nat. Rev. Mol. Cell Biol. 2, 627–633 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. P.R. Hoffmann, J.A. Kench, A. Vondracek, E. Kruk, D.L. Daleke, M. Jordan, P. Marrack, P.M. Henson, V.A. Fadok, Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J. Immunol. 174, 1393–1404 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. S. Akakura, S. Singh, M. Spataro, R. Akakura, J.I. Kim, M.L. Albert, R.B. Birge, The opsonin MFG-E8 is a ligand for the alphavbeta5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp. Cell Res. 292, 403–416 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. R. Hanayama, M. Tanaka, K. Miwa, A. Shinohara, A. Iwamatsu, S. Nagata, Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. V. D’Mello, R.B. Birge, Apoptosis: conserved roles for integrins in clearance. Curr. Biol. 20, R324–R327 (2010)

    Article  PubMed  Google Scholar 

  32. M.L. Albert, J.I. Kim, R.B. Birge, Alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat. Cell Biol. 2, 899–905 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. J. Savill, I. Dransfield, N. Hogg, C. Haslett, Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343, 170–173 (1990)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Ishimoto, K. Ohashi, K. Mizuno, T. Nakano, Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J. Biochem. 127, 411–417 (2000)

    Article  CAS  PubMed  Google Scholar 

  35. T. Hisatomi, T. Sakamoto, K.H. Sonoda, C. Tsutsumi, H. Qiao, H. Enaida, I. Yamanaka, T. Kubota, T. Ishibashi, S. Kura, S.A. Susin, G. Kroemer, Clearance of apoptotic photoreceptors: elimination of apoptotic debris into the subretinal space and macrophage-mediated phagocytosis via phosphatidylserine receptor and integrin alphavbeta3. Am. J. Pathol. 162, 1869–1879 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. R.J. Krieser, F.E. Moore, D. Dresnek, B.J. Pellock, R. Patel, A. Huang, C. Brachmann, K. White, The Drosophila homolog of the putative phosphatidylserine receptor functions to inhibit apoptosis. Development 134, 2407–2414 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. A. Bottger, M.S. Islam, R. Chowdhury, C.J. Schofield, A. Wolf, The oxygenase Jmjd6–a case study in conflicting assignments. Biochem. J. 468, 191–202 (2015)

    Article  PubMed  Google Scholar 

  38. G. Han, J. Li, Y. Wang, X. Li, H. Mao, Y. Liu, C.D. Chen, The hydroxylation activity of Jmjd6 is required for its homo-oligomerization. J. Cell. Biochem. 113, 1663–1670 (2012)

    CAS  PubMed  Google Scholar 

  39. K.K. Penberthy, K.S. Ravichandran, Apoptotic cell recognition receptors and scavenger receptors. Immunol. Rev. 269, 44–59 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. G.J. Freeman, J.M. Casasnovas, D.T. Umetsu, R.H. DeKruyff, TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev. 235, 172–189 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. L. Meertens, X. Carnec, M.P. Lecoin, R. Ramdasi, F. Guivel-Benhassine, E. Lew, G. Lemke, O. Schwartz, A. Amara, The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12, 544–557 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Miyanishi, K. Tada, M. Koike, Y. Uchiyama, T. Kitamura, S. Nagata, Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007)

    Article  CAS  PubMed  Google Scholar 

  43. S. Moller-Tank, W. Maury, Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 468–470, 565–580 (2014)

    Article  PubMed  Google Scholar 

  44. K. Morizono, I.S. Chen, Role of phosphatidylserine receptors in enveloped virus infection. J. Virol. 88, 4275–4290 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  45. P. Hahn, I. Wegener, A. Burrells, J. Bose, A. Wolf, C. Erck, D. Butler, C.J. Schofield, A. Bottger, A. Lengeling, Analysis of Jmjd6 cellular localization and testing for its involvement in histone demethylation. PLoS One 5, e13769 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  46. C.J. Webby, A. Wolf, N. Gromak, M. Dreger, H. Kramer, B. Kessler, M.L. Nielsen, C. Schmitz, D.S. Butler, J.R. Yates 3rd, C.M. Delahunty, P. Hahn, A. Lengeling, M. Mann, N.J. Proudfoot, C.J. Schofield, A. Bottger, Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325, 90–93 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. W.W. Gao, R.Q. Xiao, B.L. Peng, H.T. Xu, H.F. Shen, M.F. Huang, T.T. Shi, J. Yi, W.J. Zhang, X.N. Wu, X. Gao, X.Z. Lin, P.C. Dorrestein, M.G. Rosenfeld, W. Liu, Arginine methylation of HSP70 regulates retinoid acid-mediated RARbeta2 gene activation. Proc. Natl. Acad. Sci. USA 112, E3327–E3336 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. C. Poulard, J. Rambaud, N. Hussein, L. Corbo, M. Le Romancer, JMJD6 regulates ERalpha methylation on arginine. PLoS One 9, e87982 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  49. I. Tikhanovich, S. Kuravi, A. Artigues, M.T. Villar, K. Dorko, A. Nawabi, B. Roberts, S.A. Weinman, Dynamic arginine methylation of tumor necrosis factor (TNF) receptor-associated factor 6 regulates Toll-like receptor signaling. J. Biol. Chem. 290, 22236–22249 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. T.F. Wu, Y.L. Yao, I.L. Lai, C.C. Lai, P.L. Lin, W.M. Yang, Loading of PAX3 to mitotic chromosomes is mediated by arginine methylation and associated with waardenburg syndrome. J. Biol. Chem. 290, 20556–20564 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. F.V. Fuller-Pace, DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucl. Acids Res. 34, 4206–4215 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. F. Wang, L. He, P. Huangyang, J. Liang, W. Si, R. Yan, X. Han, S. Liu, B. Gui, W. Li, D. Miao, C. Jing, Z. Liu, F. Pei, L. Sun, Y. Shang, JMJD6 promotes colon carcinogenesis through negative regulation of p53 by hydroxylation. PLoS Biol. 12, e1001819 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  53. J. Zhang, S.S. Ni, W.L. Zhao, X.C. Dong, J.L. Wang, High expression of JMJD6 predicts unfavorable survival in lung adenocarcinoma. Tumour Biol. 34, 2397–2401 (2013)

    Article  CAS  PubMed  Google Scholar 

  54. C. Poulard, J. Rambaud, E. Lavergne, J. Jacquemetton, J.M. Renoir, O. Tredan, S. Chabaud, I. Treilleux, L. Corbo, M. Le Romancer, Role of JMJD6 in breast tumourigenesis. PLoS One 10, e0126181 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  55. Y.F. Lee, L.D. Miller, X.B. Chan, M.A. Black, B. Pang, C.W. Ong, M. Salto-Tellez, E.T. Liu, K.V. Desai, JMJD6 is a driver of cellular proliferation and motility and a marker of poor prognosis in breast cancer. Breast Cancer Res. 14, R85 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O. Aprelikova, K. Chen, L.H. El Touny, C. Brignatz-Guittard, J. Han, T. Qiu, H.H. Yang, M.P. Lee, M. Zhu, J.E. Green, The epigenetic modifier JMJD6 is amplified in mammary tumors and cooperates with c-Myc to enhance cellular transformation, tumor progression, and metastasis. Clin. Epigenet. 8, 38 (2016)

    Article  Google Scholar 

  57. C.R. Lee, S.H. Lee, N.K. Rigas, R.H. Kim, M.K. Kang, N.H. Park, K.H. Shin, Elevated expression of JMJD6 is associated with oral carcinogenesis and maintains cancer stemness properties. Carcinogenesis 37, 119–128 (2016)

    Article  CAS  PubMed  Google Scholar 

  58. J. Wan, W. Xu, J. Zhan, J. Ma, X. Li, Y. Xie, J. Wang, W.G. Zhu, J. Luo, H. Zhang, PCAF-mediated acetylation of transcriptional factor HOXB9 suppresses lung adenocarcinoma progression by targeting oncogenic protein JMJD6. Nucl. Acids Res. (2016). doi:10.1093/nar/gkw808

    Google Scholar 

  59. C. Poulard, L. Corbo, M. Le Romancer, Protein arginine methylation/demethylation and cancer. Oncotarget (2016). doi:10.18632/oncotarget.11376

    PubMed  PubMed Central  Google Scholar 

  60. L.J. Walport, R.J. Hopkinson, R. Chowdhury, R. Schiller, W. Ge, A. Kawamura, C.J. Schofield, Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat. Commun. 7, 11974 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. A. Heim, C. Grimm, U. Muller, S. Haussler, M.M. Mackeen, J. Merl, S.M. Hauck, B.M. Kessler, C.J. Schofield, A. Wolf, A. Bottger, Jumonji domain containing protein 6 (Jmjd6) modulates splicing and specifically interacts with arginine-serine-rich (RS) domains of SR- and SR-like proteins. Nucl. Acids Res. 42, 7833–7850 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. J. Barman-Aksozen, C. Beguin, A.M. Dogar, X. Schneider-Yin, E.I. Minder, Iron availability modulates aberrant splicing of ferrochelatase through the iron- and 2-oxoglutarate dependent dioxygenase Jmjd6 and U2AF(65.). Blood Cells Mol. Dis. 51, 151–161 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. M. Mantri, T. Krojer, E.A. Bagg, C.J. Webby, D.S. Butler, G. Kochan, K.L. Kavanagh, U. Oppermann, M.A. McDonough, C.J. Schofield, Crystal structure of the 2-oxoglutarate- and Fe(II)-dependent lysyl hydroxylase JMJD6. J. Mol. Biol. 401, 211–222 (2010)

    Article  CAS  PubMed  Google Scholar 

  64. X. Hong, J. Zang, J. White, C. Wang, C.H. Pan, R. Zhao, R.C. Murphy, S. Dai, P. Henson, J.W. Kappler, J. Hagman, G. Zhang, Interaction of JMJD6 with single-stranded RNA. Proc. Natl. Acad. Sci. USA 107, 14568–14572 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Unoki, A. Masuda, N. Dohmae, K. Arita, M. Yoshimatsu, Y. Iwai, Y. Fukui, K. Ueda, R. Hamamoto, M. Shirakawa, H. Sasaki, Y. Nakamura, Lysyl 5-hydroxylation, a novel histone modification, by Jumonji domain containing 6 (JMJD6). J. Biol. Chem. 288, 6053–6062 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. N. Tibrewal, T. Liu, H. Li, R.B. Birge, Characterization of the biochemical and biophysical properties of the phosphatidylserine receptor (PS-R) gene product. Mol. Cell. Biochem. 304, 119–125 (2007)

    Article  CAS  PubMed  Google Scholar 

  67. L. Zakharova, S. Dadsetan, A.F. Fomina, Endogenous Jmjd6 gene product is expressed at the cell surface and regulates phagocytosis in immature monocyte-like activated THP-1 cells. J. Cell. Physiol. 221, 84–91 (2009)

    Article  CAS  PubMed  Google Scholar 

  68. M.J. Grubman, B. Baxt, Foot-and-mouth disease. Clin. Microbiol. Rev. 17, 465–493 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. P.W. Mason, M.J. Grubman, B. Baxt, Molecular basis of pathogenesis of FMDV. Virus Res. 91, 9–32 (2003)

    Article  CAS  PubMed  Google Scholar 

  70. M. Garcia-Briones, M.F. Rosas, M. Gonzalez-Magaldi, M.A. Martin-Acebes, F. Sobrino, R. Armas-Portela, Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells. Virology 349, 409–421 (2006)

    Article  CAS  PubMed  Google Scholar 

  71. P. Lawrence, E.A. Schafer, E. Rieder, The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells. Virology 425, 40–52 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. S. Neff, D. Sa-Carvalho, E. Rieder, P.W. Mason, S.D. Blystone, E.J. Brown, B. Baxt, Foot-and-mouth disease virus virulent for cattle utilizes the integrin alpha(v)beta3 as its receptor. J. Virol. 72, 3587–3594 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. T. Jackson, S. Clark, S. Berryman, A. Burman, S. Cambier, D. Mu, S. Nishimura, A.M. King, Integrin alphavbeta8 functions as a receptor for foot-and-mouth disease virus: role of the beta-chain cytodomain in integrin-mediated infection. J. Virol. 78, 4533–4540 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. T. Jackson, A.P. Mould, D. Sheppard, A.M. King, Integrin alphavbeta1 is a receptor for foot-and-mouth disease virus. J. Virol. 76, 935–941 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. T. Jackson, D. Sheppard, M. Denyer, W. Blakemore, A.M. King, The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus. J. Virol. 74, 4949–4956 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. H. Duque, B. Baxt, Foot-and-mouth disease virus receptors: comparison of bovine alpha(V) integrin utilization by type A and O viruses. J. Virol. 77, 2500–2511 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. H. Duque, M. LaRocco, W.T. Golde, B. Baxt, Interactions of foot-and-mouth disease virus with soluble bovine alphaVbeta3 and alphaVbeta6 integrins. J. Virol. 78, 9773–9781 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. V. O’Donnell, M. LaRocco, H. Duque, B. Baxt, Analysis of foot-and-mouth disease virus internalization events in cultured cells. J. Virol. 79, 8506–8518 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  79. S. Berryman, S. Clark, P. Monaghan, T. Jackson, Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. J. Virol. 79, 8519–8534 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. E. Baranowski, C.M. Ruiz-Jarabo, N. Sevilla, D. Andreu, E. Beck, E. Domingo, Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J. Virol. 74, 1641–1647 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. D. Sa-Carvalho, E. Rieder, B. Baxt, R. Rodarte, A. Tanuri, P.W. Mason, Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J. Virol. 71, 5115–5123 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. V. O’Donnell, M. Larocco, B. Baxt, Heparan sulfate-binding foot-and-mouth disease virus enters cells via caveola-mediated endocytosis. J. Virol. 82, 9075–9085 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  83. M.V. Borca, J.M. Pacheco, L.G. Holinka, C. Carrillo, E. Hartwig, D. Garriga, E. Kramer, L. Rodriguez, M.E. Piccone, Role of arginine-56 within the structural protein VP3 of foot-and-mouth disease virus (FMDV) O1 Campos in virus virulence. Virology 422, 37–45 (2012)

    Article  CAS  PubMed  Google Scholar 

  84. F.F. Maree, B. Blignaut, L. Aschenbrenner, T. Burrage, E. Rieder, Analysis of SAT1 type foot-and-mouth disease virus capsid proteins: influence of receptor usage on the properties of virus particles. Virus Res. 155, 462–472 (2011)

    Article  CAS  PubMed  Google Scholar 

  85. S. Berryman, S. Clark, N.K. Kakker, R. Silk, J. Seago, J. Wadsworth, K. Chamberlain, N.J. Knowles, T. Jackson, Positively charged residues at the five-fold symmetry axis of cell culture-adapted foot-and-mouth disease virus permit novel receptor interactions. J. Virol. 87, 8735–8744 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. E.E. Fry, S.M. Lea, T. Jackson, J.W. Newman, F.M. Ellard, W.E. Blakemore, R. Abu-Ghazaleh, A. Samuel, A.M. King, D.I. Stuart, The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J. 18, 543–554 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. F.F. Maree, B. Blignaut, T.A. de Beer, N. Visser, E.A. Rieder, Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses. Virus Res. 153, 82–91 (2010)

    Article  CAS  PubMed  Google Scholar 

  88. T.S. McKenna, J. Lubroth, E. Rieder, B. Baxt, P.W. Mason, Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD. J. Virol. 69, 5787–5790 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Q. Zhao, J.M. Pacheco, P.W. Mason, Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals. J. Virol. 77, 3269–3280 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. P. Lawrence, M. LaRocco, B. Baxt, E. Rieder, Examination of soluble integrin resistant mutants of foot-and-mouth disease virus. Virol. J. 10, 2 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. M.E. Piccone, S. Sira, M. Zellner, M.J. Grubman, Expression in Escherichia coli and purification of biologically active L proteinase of foot-and-mouth disease virus. Virus Res. 35, 263–275 (1995)

    Article  CAS  PubMed  Google Scholar 

  92. J.D. Esko, K.S. Rostand, J.L. Weinke, Tumor formation dependent on proteoglycan biosynthesis. Science 241, 1092–1096 (1988)

    Article  CAS  PubMed  Google Scholar 

  93. M.E. Piccone, J.M. Pacheco, S.J. Pauszek, E. Kramer, E. Rieder, M.V. Borca, L.L. Rodriguez, The region between the two polyprotein initiation codons of foot-and-mouth disease virus is critical for virulence in cattle. Virology 396, 152–159 (2010)

    Article  CAS  PubMed  Google Scholar 

  94. A. Amara, J. Mercer, Viral apoptotic mimicry. Nat. Rev. Microbiol. 13, 461–469 (2015)

    Article  CAS  PubMed  Google Scholar 

  95. Y.H. Chen, W. Du, M.C. Hagemeijer, P.M. Takvorian, C. Pau, A. Cali, C.A. Brantner, E.S. Stempinski, P.S. Connelly, H.C. Ma, P. Jiang, E. Wimmer, G. Altan-Bonnet, N. Altan-Bonnet, Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160, 619–630 (2015)

    Article  CAS  PubMed  Google Scholar 

  96. Z. Feng, Y. Li, K.L. McKnight, L. Hensley, R.E. Lanford, C.M. Walker, S.M. Lemon, Human pDCs preferentially sense enveloped hepatitis A virions. J. Clin. Investig. 125, 169–176 (2015)

    Article  PubMed  Google Scholar 

  97. M.F. Barber, N.C. Elde, Evolutionary biology: mimicry all the way down. Nature 501, 38–39 (2013)

    Article  CAS  PubMed  Google Scholar 

  98. V. O’Donnell, J.M. Pacheco, M. LaRocco, T. Burrage, W. Jackson, L.L. Rodriguez, M.V. Borca, B. Baxt, Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology 410, 142–150 (2011)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Isaiah Negron and Joseph Gutkoska for their critical review of this manuscript with suggested modifications as well as for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Lawrence.

Ethics declarations

Conflict of interest

Dr. Paul Lawrence declares that he has no conflicts of interest. Dr. Elizabeth Rieder declares that she has no conflicts of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Juergen A Richt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrence, P., Rieder, E. Insights into Jumonji C-domain containing protein 6 (JMJD6): a multifactorial role in foot-and-mouth disease virus replication in cells. Virus Genes 53, 340–351 (2017). https://doi.org/10.1007/s11262-017-1449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-017-1449-8

Keywords

Navigation