Skip to main content
Log in

Fluorometric CCHFV OTU protease assay with potent inhibitors

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Crimean-Congo hemorrhagic fever virus (CCHFV) is a deadly virus that has been listed in the Category C as a potential bioterror agent. There are no specific therapies against CCHFV, which urges identification of potential therapeutic targets and development of CCHFV therapies. CCHFV OTU protease takes an important role in viral invasion through antagonizing NF-κB signaling. Inhibition of CCHFV OTU protease by small molecules warrants an exciting potential as antiviral therapeutics. Here we report the expression and purification of a C-His-tagged recombinant CCHFV OTU protease in E. coli BL21 (DE3) host strain. Activity of the refolded purified recombinant viral OTU protease has been validated with a UB-AMC fluorescent assay. In addition, we show a dose-dependent inhibition of the viral OTU protease by two small molecules. This study provides a reliable approach for recombinant expression and purification of CCHFV OTU protease, and demonstrates validation of OTU protease activity and its inhibition based on a UB-AMC florescent assay.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Frias-Staheli, N.V. Giannakopoulos, M. Kikkert, S.L. Taylor, A. Bridgen, J. Paragas, J.A. Richt, R.R. Rowland, C.S. Schmaljohn, D.J. Lenschow, E.J. Snijder, A. García-Sastre, H.W. Virgin, Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2(6), 404–416 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. D.A. Bente, N.L. Forrester, D.M. Watts, A.J. McAuley, C.A. Whitehouse, M. Bray, Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 100, 159–189 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. G.C. Capodagli, M.K. Deaton, E.A. Baker, R.J. Lumpkin, S.D. Pegan, Diversity of ubiquitin and ISG15 specificity among nairoviruses’ viral ovarian tumor domain proteases. J. Virol. 87, 3815–3827 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. K. Ergunay, C.A. Whitehouse, A. Ozkul, Current status of human arboviral diseases in Turkey. Vector Borne Zoonotic Dis. 11, 731–741 (2011)

    Article  PubMed  Google Scholar 

  5. G.C. Capodagli, M.A. McKercher, E.A. Baker, E.M. Masters, J.S. Brunzelle, S.D. Pegan, Structural analysis of a viral ovarian tumor domain protease from the crimean-congo hemorrhagic fever virus in complex with covalently bonded ubiquitin. J. Virol. 85, 3621–3630 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. E. Ozkaya, E. Dincer, A. Carhan, Y. Uyar, M. Ertek, C.A. Whitehouse, A. Ozkul, Molecular epidemiology of Crimean-Congo hemorrhagic fever virus in Turkey: occurrence of local topotype. Virus Res. 149, 64–70 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. B. Holzer, S. Bakshi, A. Bridgen, M.D. Baron, Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus. PLoS One 6(12), e28594 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. C.A. Whitehouse, Crimean-Congo hemorrhagic fever. Antiviral Res. 64, 145–160 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. M. Akutsu, Y. Ye, S. Virdee, J.W. Chin, D. Komander, Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc. Natl. Acad. Sci. 108, 2228–2233 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. O.A. Malakhova, D.-E. Zhang, ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J. Biol. Chem. 283, 8783–8787 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. O. Ergonul, Crimean-Congo hemorrhagic fever virus: new outbreaks, new discoveries. Curr. Opin. Virol. 2, 215–220 (2012)

    Article  PubMed  Google Scholar 

  12. A. Gargili, K. Midilli, O. Ergonul, S. Ergin, H.G. Alp, Z. Vatansever, S. Iyisan, C. Cerit, G. Yilmaz, K. Altas, A. Estrada-Peña, Crimean-Congo hemorrhagic fever in European part of Turkey: genetic analysis of the virus strains from ticks and a seroepidemiological study in humans. Vector Borne Zoonotic Dis. 11, 747–752 (2011)

    Article  PubMed  Google Scholar 

  13. B. Dokuzoguz, A.K. Celikbas, S.E. Gök, N. Baykam, M.N. Eroglu, O. Ergonul, Severity scoring index for crimean-congo hemorrhagic Fever and the impact of ribavirin and corticosteroids on fatality. Clin. Infect. Dis. 57, 1270–1274 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. O. Ergonul, A.K. Celikbas, B. Dokuzoguz, S.E. Gök, N. Baykam, H. Esener, Characteristics of patients with Crimean-Congo hemorrhagic fever in a recent outbreak in Turkey and impact of oral ribavirin therapy. Clin. Infect. Dis. 39(2), 284–287 (2004)

    Article  PubMed  Google Scholar 

  15. M. Lindeborg, C. Barboutis, C. Ehrenborg, T. Fransson, T.G.T. Jaenson, P.-E. Lindgren, A. Lundkvist, F. Nyström, E. Salaneck, J. Waldenström, B. Olsen, Migratory birds, ticks, and Crimean-Congo hemorrhagic fever virus. Emerg. Infect. Dis. 18, 2095–2097 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  16. A.M. Palomar, A. Portillo, P. Santibáñez, D. Mazuelas, J. Arizaga, A. Crespo, Ó. Gutiérrez, J.F. Cuadrado, J.A. Oteo, Crimean-Congo hemorrhagic fever virus in ticks from migratory birds. Morocco. Emerg. Infect. Dis. 19, 260–263 (2013)

    Article  PubMed  Google Scholar 

  17. P. Gale, B. Stephenson, A. Brouwer, M. Martinez, A. la de Torre, J. Bosch, M. Foley-Fisher, P. Bonilauri, A. Lindström, R.G. Ulrich, J. de Vos, M. Scremin, L. Kelly, Z. Liu, M.J. Muñoz, Impact of climate change on risk of incursion of Crimean-Congo haemorrhagic fever virus in livestock in Europe through migratory birds. J. Appl. Microbiol. 112, 246–257 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. F. Weber, A. Mirazimi, Interferon and cytokine responses to Crimean Congo hemorrhagic fever virus; an emerging and neglected viral zonoosis. Cytokine Growth Factor Rev. 19, 395–404 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. M.D. Arguello, J. Hiscott, Ub surprised: viral ovarian tumor domain proteases remove ubiquitin and ISG15 conjugates. Cell Host Microbe 2, 367–369 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. P.B. van Kasteren, C. Beugeling, D.K. Ninaber, Arterivirus and nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling. J. Virol. 86(2), 773–785 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  21. T.W. James, N. Frias-Staheli, J.-P. Bacik, J.M. Levingston Macleod, M. Khajehpour, A. García-Sastre, B.L. Mark, Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. Proc. Natl. Acad. Sci. 108, 2222–2227 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. E. Kinsella, S.G. Martin, A. Grolla, M. Czub, H. Feldmann, R. Flick, Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology 321(1), 23–28 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. P. Puigbò, E. Guzmán, A. Romeu, S. Garcia-Vallvé, OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 35, W126–W131 (2007)

    Article  PubMed Central  PubMed  Google Scholar 

  24. E.E. Bolton, Y. Wang, P.A. Thiessen, S.H. Bryant, PubChem: integrated platform of small molecules and biological activities. Annu. Rep. Comput. Chem. 4, 217–241 (2008)

    Article  CAS  Google Scholar 

  25. Y. Wang, J. Xiao, T.O. Suzek, J. Zhang, J. Wang, Z. Zhou, L. Han, K. Karapetyan, S. Dracheva, B.A. Shoemaker, E. Bolton, A. Gindulyte, S.H. Bryant, PubChem’s bioassay database. Nucleic Acids Res. 40, D400–D412 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  26. O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2009)

    Google Scholar 

  27. M.F. Sanner, A.J. Olson, J.C. Spehner, Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. M.F. Sanner, Python: a programming language for software integration and development. J. Mol. Graph. Model. 17, 57–61 (1999)

    CAS  PubMed  Google Scholar 

  29. T. Matsunaga, Y. Morikawa, M. Haga, S. Endo, M. Soda, K. Yamamura, O. El-Kabbani, K. Tajima, A. Ikari, A. Hara, Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10. Toxicol. Appl. Pharmacol. 278, 180–189 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. X.M. Cotto-Rios, M. Békés, J. Chapman, B. Ueberheide, T.T. Huang, Deubiquitinases as a signaling target of oxidative stress. Cell Rep. 2, 1475–1484 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. E. Bergeron, C.G. Albarino, M.L. Khristova, S.T. Nichol, Crimean-Congo hemorrhagic fever virus-encoded ovarian tumor protease activity is dispensable for virus RNA polymerase function. J. Virol. 84, 216–226 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Savas Kaya from Immunology Department, School of Medicine, Dicle University, Diyarbakir Turkey for his valuable input regarding MGLTools, and Autodock Vina. We thank Dr. Andrew J. Harvey from the Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey for his critical reading of the manuscript. We thank the support from Co-Funded Brain Circulation Scheme by The Scientific and Technological Research Council of Turkey (TÜBİTAK) and The Marie Curie Action COFUND of the 7th. Framework Programme (FP7) of the European Commission Grant#115C039, The Science Academy Young Scientist Award Program (BAGEP-2015, Turkey), funds provided by North American University, Houston, USA and Yeditepe University, Istanbul, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Kocabas.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest concerning this work.

Additional information

Edited by Paul Schnitzler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11262_2015_1226_MOESM1_ESM.pdf

pET26b(+) vector was linearized with NdeI and NcoI enzymes. This was followed by In-Fusion cloning (Clontech) of linearized vector and two gene fragments (about 315-320 base pair long) with homology sequences. Supplementary material 1 (PDF 65 kb)

Supplementary material 2 (PDF 121 kb)

Supplementary material 3 (PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocabas, F., Aslan, G.S. Fluorometric CCHFV OTU protease assay with potent inhibitors. Virus Genes 51, 190–197 (2015). https://doi.org/10.1007/s11262-015-1226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-015-1226-5

Keywords

Navigation