Abstract
Acquisition of new proteins by viruses usually occurs through horizontal gene transfer or through gene duplication, but another, less common mechanism is the usage of completely or partially overlapping reading frames. A case of acquisition of a completely new protein through introduction of a start codon in an alternative reading frame is the protein encoded by open reading frame (orf) 9b of SARS coronavirus. This gene completely overlaps with the nucleocapsid (N) gene (orf9a). Our findings indicate that the orf9b gene features a discordant codon-usage pattern. We analyzed the evolution of orf9b in concert with orf9a using sequence data of betacoronavirus-lineage b and found that orf9b, which encodes the overprinting protein, evolved largely independent of the overprinted orf9a. We also examined the protein products of these genomic sequences for their structural flexibility and found that it is not necessary for a newly acquired, overlapping protein product to be intrinsically disordered, in contrast to earlier suggestions. Our findings contribute to characterizing sequence properties of newly acquired genes making use of overlapping reading frames.



Similar content being viewed by others
References
C. Rancurrel, M. Khosravi, A.K. Dunker, P. Romero, D. Karlin, Overlapping genes produce proteins with unusual sequence properties and offer Insight into de novo protein creation. J. Virol. 83, 10719–10736 (2009)
E.P. Plant, Ribosomal frameshift signals in viral genomes, in Viral Genomes—Molecular Structure, Diversity, Gene Expression Mechanisms and Host-Virus Interactions, ed. by M. Garcia (ISBN, 978-953-51-0098-0, InTech, 2012). doi:10.5772/26550. http://www.intechopen.com/books/viral-genomes-molecular-structure-diversity-gene-expression-mechanisms-and-host-virus-interactions/frameshift-signals-in-viral-genomes. Accessed 16 July 2014. Accessed 16 July 2014
R. Belshaw, O.G. Pybus, A. Rambaut, The evolution of genome compression and genomic novelty in RNA viruses. Genome Res. 10, 1496–1504 (2007)
K.I. Jordan, B.A. Sutter, M.A. McClure, Molecular evolution of the paramyxoviridae and the rhabdoviridae multiple-protein-encoding P gene. Mol. Biol. Evol. 17, 75–86 (2000)
D.C. Krakauer, Stability and evolution of overlapping genes. Evolution 54, 731–739 (2000)
N. Chirico, A. Vianelli, R. Belshaw, Why genes overlap in viruses? Proc. Biol. Sci. 277, 3809–3817 (2010)
T. Miyata, T. Yasunaga, Evolution of overlapping genes. Nature 272, 532–535 (1978)
M. Kozak, The scanning model for translation, an update. J. Cell Biol. 108, 229–241 (1989)
M. Kozak, Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 1–34 (2002)
M. Kozak, Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208 (1999)
L.A. Ryabova, M.M. Pooggin, T. Hohn, Translation reinitiation and leaky scanning in plant viruses. Virus Res. 119, 52–62 (2006)
S. Zou, E.G. Brown, Translation of the reovirus M1 gene initiates from the first AUG codon in both infected and transfected cells. Virus Res. 40, 75–89 (1996)
D. Matsuda, T.W. Dreher, Close spacing of AUG initiation codons confers dicistronic character on a eukaryotic mRNA. RNA 12, 1338–1349 (2006)
T. Jacks, H.D. Madhani, F.R. Masiarz, H.E. Varmus, Signals for ribosomal frameshifting in Rous Sarcoma virus gag-pol region. Cell 55, 447–458 (1988)
I. Brierley, P. Digard, S. Inglis, Characterization of an efficient ribosomal frameshifting signal, requirement for an RNA pseudoknot. Cell 57, 537–547 (1989)
I. Brierely, F.J. Dos Ramos, Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res. 119, 29–42 (2006)
J. Dinman, Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip. Rev. RNA 3, 661–673 (2012). doi:10.1002/wrna.1126
A. Honigman, cis acting RNA sequences control the gag-pol translation readthrough in murine leukemia virus. Virology 183, 313–319 (1991)
M. Orlova, Reverse transcriptase of moloney murine leukemia virus binds to eukaryotic release factor 1 to modulate suppression of translational termination. Cell 115, 319–331 (2003)
H. Beier, UAG readthrough during TMV RNA translation, isolation and sequence of two tRNAs with suppressor activity from tobacco plants. EMBO J. 3, 351–356 (1984)
Y. Fang, E.E. Treffers, Y. Li, A. Tas, Z. Sun, Y. van der Meer, A.H. de Ru, P.A. van Veelen, J.F. Atkins, E.J. Snijder, A.E. Firth, Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc. Natl. Acad. Sci. USA. 109, E2920–E2928 (2012). doi:10.1073/pnas.1211145109
Y. Li, E.E. Treffers, S. Napthine, A. Tas, L. Zhu, Z. Sun, S. Bell, B.L. Mark, P.A. van Veelen, M.J. van Hemert, A.E. Firth, I. Brierley, E.J. Snijder, Y. Fang, Transactivation of programmed ribosomal frameshifting by a viral protein. Proc. Natl. Acad. Sci. USA. 111, E2172–E2181 (2014). doi:10.1073/pnas.1321930111
A. Pavesi, Detection of signature sequences in overlapping genes and prediction of a novel overlapping gene in hepatitis G virus. J. Mol. Evol. 50, 284–295 (2000)
Y. Fujii, K. Kiyotani, T. Yoshida, T. Sakaguchi, Conserved and non-conserved regions in the Sendai virus genome, evolution of a gene possessing overlapping reading frames. Virus Genes 22, 47–52 (2001)
A. Pavesi, Origin and evolution of overlapping genes in the family Microviridae. J. Gen. Virol. 87, 1013–1017 (2006)
M. Mizokami, E. Orito, K. Ohba, K. Ikeo, J.Y. Lau, T. Gojobori, Constrained evolution with respect to gene overlap of hepatitis B virus. J. Mol. Evol. 44(Suppl 1), S83–S90 (1997)
H.L. Zaaijer, F.J. van Hemert, M.H. Koppelman, V.V. Lukashov, Independent evolution of overlapping polymerase and surface protein genes of hepatitis B virus. J. Gen. Virol. 88, 2137–2143 (2007)
N. Sabath, A. Wagner, D. Karlin, Evolution of viral proteins originated de novo by overprinting. Mol. Biol. Evol. 29, 3767–3780 (2012)
V.C.C. Cheng, J.F.W. Chan, K.K.W. To, K.Y. Yuen, Clinical management and infection control of SARS. Antiviral Res. 100, 407–419 (2013)
R. Hilgenfeld, J.S.M. Peiris, From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res. 100, 286–295 (2013)
W. Li, Z. Shi, M. Yu, W. Ren, C. Smith, J.H. Epstein, H. Wang, G. Crameri, Z. Hu, H. Zhang, J. Zhang, J. McEachern, H. Field, P. Daszak, B.T. Eaton, S. Zhang, L.F. Wang, Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005)
J.F. Drexler, V.M. Corman, C. Drosten, Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 101, 45–56 (2014)
X.Y. Ge, J.L. Li, X.L. Yang, A.A. Chmura, G. Zhu, J.H. Epstein, J.K. Mazet, B. Hu, W. Zhang, C. Peng, Y.J. Zhang, C.M. Luo, B. Tan, N. Wang, Y. Zhu, G. Crameri, S.Y. Zhang, L.F. Wang, P. Daszak, Z.L. Shi, Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013)
A.M. Zaki, S. van Boheemen, T.M. Bestebroer, A.D.M.E. Osterhaus, R.A.M. Fouchier, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012)
R.J. de Groot, S.C. Baker, R.S. Baric, C.S. Brown, C. Drosten, L. Enjuanes, R.A. Fouchier, M. Galiano, A.E. Gorbalenya, Z.A. Memish, S. Perlman, L.L. Poon, E.J. Snijder, G.M. Stephens, P.C. Woo, A.M. Zaki, M. Zambon, J. Ziebuhr, Middle East Respiratory Syndrome coronavirus (MERS-CoV); Announcement of the coronavirus study group. J. Virol. 87, 7790–7792 (2013)
S. van Boheemen, M. de Graaf, C. Lauber, T.M. Bestebroer, V.S. Raj, A.M. Zaki, A.D.M.E. Osterhaus, B.L. Haagmans, A.E. Gorbalenya, E.J. Snijder, R.A.M. Fouchier, Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3, e00473–e00512 (2012) doi:10.1128/mBio.00473-12
M. Cotten, T.T. Lam, S.J. Watson, A.L. Palser, V. Petrova, P. Grant, O.G. Pybus, A. Rambaut, Y. Guan, D. Pillay, P. Kellam, E. Nastouli, Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus. Emerg. Infect. Dis. 19, 736–742 (2013)
C.B. Reusken, B.L. Haagmans, M.A. Müller, C. Gutierrez, G.J. Godeke, B. Meyer, D. Muth, V.S. Raj, L. Smits-De Vries, V.M. Corman, J.F. Drexler, S.L. Smits, Y.E. El Tahir, R. De Sousa, J. van Beek, N. Nowotny, K. van Maanen, E. Hidalgo-Hermoso, B.J. Bosch, P. Rottier, A. Osterhaus, C. Gortázar-Schmidt, C. Drosten, M.P. Koopmans, Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect. Dis. 13, 859–866 (2013)
B. Meyer, M.A. Müller, V.M. Corman, C.B. Reusken, D. Ritz, G.J. Godecke, E. Lattwein, S. Kallies, A. Simens, J. van Beek, J.F. Drexler, D. Muth, B.J. Bosch, U. Wernery, M.P. Koopmans, R. Wernery, C. Drosten, Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg. Infect. Dis. 20, 552–559 (2014)
B.L. Haagmans, S.H. Al Dhahiry, C.B. Reusken, V.S. Raj, M. Galiano, R. Myers, G.J. Godeke, M. Jonges, E. Farag, A. Diab, H. Ghobashy, F. Alhajri, M. Al-Thani, S.A. Al-Marri, H.E. Al Romaihi, A. Al Khal, A. Bermingham, A.D. Osterhaus, M.M. AlHajri, M.P. Koopmans, Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect. Dis. 14, 140–145 (2014)
A. Annan, H.J. Baldwin, V.M. Corman, S.M. Klose, M. Owusu, E.E. Nkrumah, E.K. Badu, P. Anti, O. Agbenyega, B. Meyer, S. Oppong, Y.A. Sarkodie, E.K. Kalko, P.H. Lina, E.V. Godlevska, C. Reusken, A. Seebens, F. Gloza-Rausch, P. Vallo, M. Tschapka, C. Drosten, J.F. Drexler, Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 19, 456–459 (2013)
N.L. Ithete, S. Stoffberg, V.M. Corman, V.M. Cottontail, L.R. Richards, M.C. Schoeman, C. Drosten, J.F. Drexler, W. Preiser, Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. 19, 1697–1699 (2013). doi:10.3201/eid1910.130946
Y. Yang, L. Du, C. Liu, L. Wang, C. Ma, J. Tang, R.S. Baric, S. Jiang, F. Li, Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl. Acad. Sci. USA. 111, 12516–12521 (2014). doi:10.1073/pnas.1405889111
World Health Organization, Global Alert and Response (GAR). Middle East respiratory syndrome coronavirus (MERS-CoV)—summary updates, http://www.who.int/csr/don/2014_07_23_mers/en/. Accessed 09 Sep 2014
M.A. Marra, S.J. Jones, C.R. Astell, R.A. Holt, A. Brooks-Wilson, Y.S. Butterfield, J. Khattra, J.K. Asano, S.A. Barber, S.Y. Chan, A. Cloutier, S.M. Coughlin, D. Freeman, N. Girn, O.L. Griffith, S.R. Leach, M. Mayo, H. McDonald, S.B. Montgomery, P.K. Pandoh, A.S. Petrescu, A.G. Robertson, J.E. Schein, A. Siddiqui, D.E. Smailus, J.M. Stott, G.S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T.F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G.A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R.C. Brunham, M. Krajden, M. Petric, D.M. Skowronski, C. Upton, R.L. Roper, The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404 (2003)
P.A. Rota, M.S. Oberste, S.S. Monroe, W.A. Nix, R. Campagnoli, J.P. Icenogle, S. Peñaranda, B. Bankamp, K. Maher, M.H. Chen, S. Tong, A. Tamin, L. Lowe, M. Frace, J.L. DeRisi, Q. Chen, D. Wang, D.D. Erdman, T.C. Peret, C. Burns, T.G. Ksiazek, P.E. Rollin, A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland, M. Olsen-Rasmussen, R. Fouchier, S. Günther, A.D. Osterhaus, C. Drosten, M.A. Pallansch, L.J. Anderson, W.J. Bellini, Characterization of a novel coronavirus associated with Severe Acute Respiratory Syndrome. Science 300, 1394–1399 (2003)
K. Narayanan, C. Huang, S. Makino, SARS coronavirus accessory proteins. Virus Res. 133, 113–121 (2008)
R. McBride, B.C. Fielding, The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses 4, 2902–2923 (2012)
D.X. Liu, T.S. Fung, K.K. Chong, A. Shukla, R. Hilgenfeld, Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 109, 97–109 (2014)
Y.J. Tan, S.G. Lim, W. Hong, Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res. 72, 78–88 (2006)
B. Yount, R.S. Roberts, A.C. Sims, D. Deming, M.B. Frieman, J. Sparks, M.R. Denison, N. Davis, R.S. Baric, Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol. 79, 14909–14922 (2005)
M.L. Dediego, L. Pewe, E. Alvarez, M.T. Rejas, S. Perlman, L. Enjuanes, Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology 376, 379–389 (2008)
A. von Brunn, C. Teepe, J.C. Simpson, R. Pepperkok, C.C. Friedel, R. Zimmer, R. Roberts, R. Baric, J. Haas, Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS ONE 2, e459 (2007). doi:10.1371/journal.pone.0000459
K. Xu, B.J. Zheng, R. Zeng, W. Lu, Y.P. Lin, L. Xue, L. Li, L.L. Yang, C. Xu, J. Dai, F. Wang, Q. Li, Q.X. Dong, R.F. Yang, J.R. Wu, B. Sun, Severe acute respiratory syndrome coronavirus accessory protein 9b is a virion-associated protein. Virology 388, 279–285 (2009)
W.S. Chan, C. Wu, S.C. Chow, T. Cheung, K.F. To, W.K. Leung, P.K. Chan, K.C. Lee, H.K. Ng, D.M. Au, A.W. Lo, Coronaviral hypothetical and structural proteins were found in the intestinal surface enterocytes and pneumocytes of severe acute respiratory syndrome (SARS). Mod. Pathol. 18, 1432–1439 (2005)
M. Qiu, Y. Shi, Z. Guo, Z. Chen, R. He, R. Chen, D. Zhou, E. Dai, X. Wang, B. Si, Y. Song, J. Li, L. Yang, J. Wang, H. Wang, X. Pang, J. Zhai, Z. Du, Y. Liu, Y. Zhang, L. Li, J. Wang, B. Sun, R. Yang, Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect. 7, 882–889 (2005)
Chinese SARS Molecular Epidemiology Consortium, Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669 (2004)
K.S. Saikatendu, J.S. Joseph, V. Subramanian, B.W. Neuman, M.J. Buchmeier, R.C. Stevens, P. Kuhn, Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J. Virol. 81, 3913–3921 (2007)
C. Meier, A.R. Aricescu, D.I. Stuart, J. Grimes, R.J.C. Gilbert, R.T. Aplin, R. Assenberg, The crystal structure of ORF 9b, a lipid binding protein from the SARS Coronavirus. Structure 14, 1157–1165 (2006)
P. Stothard, The sequence manipulation suite, JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28, 1102–1104 (2000)
P.M. Sharp, W.H. Li, The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987)
A. Pavesi, B. De Iaco, M.I. Granero, A. Porati, On the informational content of overlapping genes in prokaryotic and eukaryotic viruses. J. Mol. Evol. 44, 625–631 (1997)
A. Pavesi, G. Magiorkinis, D.G. Karlin, Viral proteins originated de novo by overprinting can be identified by codon usage, application to the “gene nursery” of deltaretroviruses. PLoS Comput. Biol. 9, e1003162 (2013). doi:10.1371/journal.pcbi.1003162
M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, D.G. Higgins, Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)
P. Librado, J. Rozas, DnaSP v5, A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009)
T.A. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999)
Z. Obradovic, K. Peng, S. Vucetic, P. Radivojac, C.J. Brown, A.K. Dunker, Predicting intrinsic disorder from amino acid sequence. Proteins 53, 566–572 (2003)
L.D. Hurst, The Ka/Ks ratio, diagnosing the form of sequence evolution. Trends Genet. 8, 486 (2002)
W. Lapps, B.G. Hogue, D.A. Brian, Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology 157, 47–57 (1987)
F. Fischer, D. Peng, S.T. Hingley, S.R. Weiss, P.S. Masters, The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J. Virol. 71, 996–1003 (1997)
S.D. Senanayake, D.A. Brian, Bovine coronavirus I protein synthesis follows ribosomal scanning on the bicistronic N mRNA. Virus Res. 48, 101–105 (1997)
E. Calvo, M.L. DeDiego, P. Garcia, J.A. Lopez, P. Perez-Brena, A. Falcon, Severe acute respiratory syndrome coronavirus accessory proteins 6 and 9b interact in vivo. Virus Res. 169, 282–288 (2012)
C. Chang, M.H. Hou, C.F. Chang, C.D. Hsiao, T.H. Huang, The SARS coronavirus nucleocapsid protein - forms and functions. Antiviral Res. 103, 39–50 (2014)
Acknowledgments
We thank Dr. Zhengli Shi of the Wuhan Institute of Virology, Chinese Academy of Sciences, for sharing the sequence of the SL-CoV WIV1 nucleocapsid gene with us prior to publication. This project has been supported by the “Graduate School for Computing in Medicine & Life Sciences” funded by Germany’s Excellence Initiative [DFG GSC 235/2].
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Shukla, A., Hilgenfeld, R. Acquisition of new protein domains by coronaviruses: analysis of overlapping genes coding for proteins N and 9b in SARS coronavirus. Virus Genes 50, 29–38 (2015). https://doi.org/10.1007/s11262-014-1139-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11262-014-1139-8


