Skip to main content
Log in

Acquisition of new protein domains by coronaviruses: analysis of overlapping genes coding for proteins N and 9b in SARS coronavirus

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Acquisition of new proteins by viruses usually occurs through horizontal gene transfer or through gene duplication, but another, less common mechanism is the usage of completely or partially overlapping reading frames. A case of acquisition of a completely new protein through introduction of a start codon in an alternative reading frame is the protein encoded by open reading frame (orf) 9b of SARS coronavirus. This gene completely overlaps with the nucleocapsid (N) gene (orf9a). Our findings indicate that the orf9b gene features a discordant codon-usage pattern. We analyzed the evolution of orf9b in concert with orf9a using sequence data of betacoronavirus-lineage b and found that orf9b, which encodes the overprinting protein, evolved largely independent of the overprinted orf9a. We also examined the protein products of these genomic sequences for their structural flexibility and found that it is not necessary for a newly acquired, overlapping protein product to be intrinsically disordered, in contrast to earlier suggestions. Our findings contribute to characterizing sequence properties of newly acquired genes making use of overlapping reading frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Rancurrel, M. Khosravi, A.K. Dunker, P. Romero, D. Karlin, Overlapping genes produce proteins with unusual sequence properties and offer Insight into de novo protein creation. J. Virol. 83, 10719–10736 (2009)

    Article  Google Scholar 

  2. E.P. Plant, Ribosomal frameshift signals in viral genomes, in Viral Genomes—Molecular Structure, Diversity, Gene Expression Mechanisms and Host-Virus Interactions, ed. by M. Garcia (ISBN, 978-953-51-0098-0, InTech, 2012). doi:10.5772/26550. http://www.intechopen.com/books/viral-genomes-molecular-structure-diversity-gene-expression-mechanisms-and-host-virus-interactions/frameshift-signals-in-viral-genomes. Accessed 16 July 2014. Accessed 16 July 2014

  3. R. Belshaw, O.G. Pybus, A. Rambaut, The evolution of genome compression and genomic novelty in RNA viruses. Genome Res. 10, 1496–1504 (2007)

    Article  Google Scholar 

  4. K.I. Jordan, B.A. Sutter, M.A. McClure, Molecular evolution of the paramyxoviridae and the rhabdoviridae multiple-protein-encoding P gene. Mol. Biol. Evol. 17, 75–86 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. D.C. Krakauer, Stability and evolution of overlapping genes. Evolution 54, 731–739 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. N. Chirico, A. Vianelli, R. Belshaw, Why genes overlap in viruses? Proc. Biol. Sci. 277, 3809–3817 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. T. Miyata, T. Yasunaga, Evolution of overlapping genes. Nature 272, 532–535 (1978)

    Article  CAS  PubMed  Google Scholar 

  8. M. Kozak, The scanning model for translation, an update. J. Cell Biol. 108, 229–241 (1989)

    Article  CAS  PubMed  Google Scholar 

  9. M. Kozak, Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 1–34 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. M. Kozak, Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. L.A. Ryabova, M.M. Pooggin, T. Hohn, Translation reinitiation and leaky scanning in plant viruses. Virus Res. 119, 52–62 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. S. Zou, E.G. Brown, Translation of the reovirus M1 gene initiates from the first AUG codon in both infected and transfected cells. Virus Res. 40, 75–89 (1996)

    Article  CAS  PubMed  Google Scholar 

  13. D. Matsuda, T.W. Dreher, Close spacing of AUG initiation codons confers dicistronic character on a eukaryotic mRNA. RNA 12, 1338–1349 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. T. Jacks, H.D. Madhani, F.R. Masiarz, H.E. Varmus, Signals for ribosomal frameshifting in Rous Sarcoma virus gag-pol region. Cell 55, 447–458 (1988)

    Article  CAS  PubMed  Google Scholar 

  15. I. Brierley, P. Digard, S. Inglis, Characterization of an efficient ribosomal frameshifting signal, requirement for an RNA pseudoknot. Cell 57, 537–547 (1989)

    Article  CAS  PubMed  Google Scholar 

  16. I. Brierely, F.J. Dos Ramos, Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res. 119, 29–42 (2006)

    Article  Google Scholar 

  17. J. Dinman, Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip. Rev. RNA 3, 661–673 (2012). doi:10.1002/wrna.1126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. A. Honigman, cis acting RNA sequences control the gag-pol translation readthrough in murine leukemia virus. Virology 183, 313–319 (1991)

    Article  CAS  PubMed  Google Scholar 

  19. M. Orlova, Reverse transcriptase of moloney murine leukemia virus binds to eukaryotic release factor 1 to modulate suppression of translational termination. Cell 115, 319–331 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. H. Beier, UAG readthrough during TMV RNA translation, isolation and sequence of two tRNAs with suppressor activity from tobacco plants. EMBO J. 3, 351–356 (1984)

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Y. Fang, E.E. Treffers, Y. Li, A. Tas, Z. Sun, Y. van der Meer, A.H. de Ru, P.A. van Veelen, J.F. Atkins, E.J. Snijder, A.E. Firth, Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc. Natl. Acad. Sci. USA. 109, E2920–E2928 (2012). doi:10.1073/pnas.1211145109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Y. Li, E.E. Treffers, S. Napthine, A. Tas, L. Zhu, Z. Sun, S. Bell, B.L. Mark, P.A. van Veelen, M.J. van Hemert, A.E. Firth, I. Brierley, E.J. Snijder, Y. Fang, Transactivation of programmed ribosomal frameshifting by a viral protein. Proc. Natl. Acad. Sci. USA. 111, E2172–E2181 (2014). doi:10.1073/pnas.1321930111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. A. Pavesi, Detection of signature sequences in overlapping genes and prediction of a novel overlapping gene in hepatitis G virus. J. Mol. Evol. 50, 284–295 (2000)

    CAS  PubMed  Google Scholar 

  24. Y. Fujii, K. Kiyotani, T. Yoshida, T. Sakaguchi, Conserved and non-conserved regions in the Sendai virus genome, evolution of a gene possessing overlapping reading frames. Virus Genes 22, 47–52 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. A. Pavesi, Origin and evolution of overlapping genes in the family Microviridae. J. Gen. Virol. 87, 1013–1017 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. M. Mizokami, E. Orito, K. Ohba, K. Ikeo, J.Y. Lau, T. Gojobori, Constrained evolution with respect to gene overlap of hepatitis B virus. J. Mol. Evol. 44(Suppl 1), S83–S90 (1997)

    Article  PubMed  Google Scholar 

  27. H.L. Zaaijer, F.J. van Hemert, M.H. Koppelman, V.V. Lukashov, Independent evolution of overlapping polymerase and surface protein genes of hepatitis B virus. J. Gen. Virol. 88, 2137–2143 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. N. Sabath, A. Wagner, D. Karlin, Evolution of viral proteins originated de novo by overprinting. Mol. Biol. Evol. 29, 3767–3780 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. V.C.C. Cheng, J.F.W. Chan, K.K.W. To, K.Y. Yuen, Clinical management and infection control of SARS. Antiviral Res. 100, 407–419 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. R. Hilgenfeld, J.S.M. Peiris, From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res. 100, 286–295 (2013)

    Article  CAS  PubMed  Google Scholar 

  31. W. Li, Z. Shi, M. Yu, W. Ren, C. Smith, J.H. Epstein, H. Wang, G. Crameri, Z. Hu, H. Zhang, J. Zhang, J. McEachern, H. Field, P. Daszak, B.T. Eaton, S. Zhang, L.F. Wang, Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. J.F. Drexler, V.M. Corman, C. Drosten, Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 101, 45–56 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. X.Y. Ge, J.L. Li, X.L. Yang, A.A. Chmura, G. Zhu, J.H. Epstein, J.K. Mazet, B. Hu, W. Zhang, C. Peng, Y.J. Zhang, C.M. Luo, B. Tan, N. Wang, Y. Zhu, G. Crameri, S.Y. Zhang, L.F. Wang, P. Daszak, Z.L. Shi, Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. A.M. Zaki, S. van Boheemen, T.M. Bestebroer, A.D.M.E. Osterhaus, R.A.M. Fouchier, Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. R.J. de Groot, S.C. Baker, R.S. Baric, C.S. Brown, C. Drosten, L. Enjuanes, R.A. Fouchier, M. Galiano, A.E. Gorbalenya, Z.A. Memish, S. Perlman, L.L. Poon, E.J. Snijder, G.M. Stephens, P.C. Woo, A.M. Zaki, M. Zambon, J. Ziebuhr, Middle East Respiratory Syndrome coronavirus (MERS-CoV); Announcement of the coronavirus study group. J. Virol. 87, 7790–7792 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  36. S. van Boheemen, M. de Graaf, C. Lauber, T.M. Bestebroer, V.S. Raj, A.M. Zaki, A.D.M.E. Osterhaus, B.L. Haagmans, A.E. Gorbalenya, E.J. Snijder, R.A.M. Fouchier, Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 3, e00473–e00512 (2012) doi:10.1128/mBio.00473-12

  37. M. Cotten, T.T. Lam, S.J. Watson, A.L. Palser, V. Petrova, P. Grant, O.G. Pybus, A. Rambaut, Y. Guan, D. Pillay, P. Kellam, E. Nastouli, Full-genome deep sequencing and phylogenetic analysis of novel human betacoronavirus. Emerg. Infect. Dis. 19, 736–742 (2013)

    Google Scholar 

  38. C.B. Reusken, B.L. Haagmans, M.A. Müller, C. Gutierrez, G.J. Godeke, B. Meyer, D. Muth, V.S. Raj, L. Smits-De Vries, V.M. Corman, J.F. Drexler, S.L. Smits, Y.E. El Tahir, R. De Sousa, J. van Beek, N. Nowotny, K. van Maanen, E. Hidalgo-Hermoso, B.J. Bosch, P. Rottier, A. Osterhaus, C. Gortázar-Schmidt, C. Drosten, M.P. Koopmans, Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect. Dis. 13, 859–866 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. B. Meyer, M.A. Müller, V.M. Corman, C.B. Reusken, D. Ritz, G.J. Godecke, E. Lattwein, S. Kallies, A. Simens, J. van Beek, J.F. Drexler, D. Muth, B.J. Bosch, U. Wernery, M.P. Koopmans, R. Wernery, C. Drosten, Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg. Infect. Dis. 20, 552–559 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  40. B.L. Haagmans, S.H. Al Dhahiry, C.B. Reusken, V.S. Raj, M. Galiano, R. Myers, G.J. Godeke, M. Jonges, E. Farag, A. Diab, H. Ghobashy, F. Alhajri, M. Al-Thani, S.A. Al-Marri, H.E. Al Romaihi, A. Al Khal, A. Bermingham, A.D. Osterhaus, M.M. AlHajri, M.P. Koopmans, Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect. Dis. 14, 140–145 (2014)

    Article  CAS  PubMed  Google Scholar 

  41. A. Annan, H.J. Baldwin, V.M. Corman, S.M. Klose, M. Owusu, E.E. Nkrumah, E.K. Badu, P. Anti, O. Agbenyega, B. Meyer, S. Oppong, Y.A. Sarkodie, E.K. Kalko, P.H. Lina, E.V. Godlevska, C. Reusken, A. Seebens, F. Gloza-Rausch, P. Vallo, M. Tschapka, C. Drosten, J.F. Drexler, Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 19, 456–459 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  42. N.L. Ithete, S. Stoffberg, V.M. Corman, V.M. Cottontail, L.R. Richards, M.C. Schoeman, C. Drosten, J.F. Drexler, W. Preiser, Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. 19, 1697–1699 (2013). doi:10.3201/eid1910.130946

    Article  PubMed Central  PubMed  Google Scholar 

  43. Y. Yang, L. Du, C. Liu, L. Wang, C. Ma, J. Tang, R.S. Baric, S. Jiang, F. Li, Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl. Acad. Sci. USA. 111, 12516–12521 (2014). doi:10.1073/pnas.1405889111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. World Health Organization, Global Alert and Response (GAR). Middle East respiratory syndrome coronavirus (MERS-CoV)—summary updates, http://www.who.int/csr/don/2014_07_23_mers/en/. Accessed 09 Sep 2014

  45. M.A. Marra, S.J. Jones, C.R. Astell, R.A. Holt, A. Brooks-Wilson, Y.S. Butterfield, J. Khattra, J.K. Asano, S.A. Barber, S.Y. Chan, A. Cloutier, S.M. Coughlin, D. Freeman, N. Girn, O.L. Griffith, S.R. Leach, M. Mayo, H. McDonald, S.B. Montgomery, P.K. Pandoh, A.S. Petrescu, A.G. Robertson, J.E. Schein, A. Siddiqui, D.E. Smailus, J.M. Stott, G.S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T.F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G.A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R.C. Brunham, M. Krajden, M. Petric, D.M. Skowronski, C. Upton, R.L. Roper, The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404 (2003)

    Article  CAS  PubMed  Google Scholar 

  46. P.A. Rota, M.S. Oberste, S.S. Monroe, W.A. Nix, R. Campagnoli, J.P. Icenogle, S. Peñaranda, B. Bankamp, K. Maher, M.H. Chen, S. Tong, A. Tamin, L. Lowe, M. Frace, J.L. DeRisi, Q. Chen, D. Wang, D.D. Erdman, T.C. Peret, C. Burns, T.G. Ksiazek, P.E. Rollin, A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland, M. Olsen-Rasmussen, R. Fouchier, S. Günther, A.D. Osterhaus, C. Drosten, M.A. Pallansch, L.J. Anderson, W.J. Bellini, Characterization of a novel coronavirus associated with Severe Acute Respiratory Syndrome. Science 300, 1394–1399 (2003)

    Article  CAS  PubMed  Google Scholar 

  47. K. Narayanan, C. Huang, S. Makino, SARS coronavirus accessory proteins. Virus Res. 133, 113–121 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. R. McBride, B.C. Fielding, The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses 4, 2902–2923 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. D.X. Liu, T.S. Fung, K.K. Chong, A. Shukla, R. Hilgenfeld, Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 109, 97–109 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. Y.J. Tan, S.G. Lim, W. Hong, Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus. Antiviral Res. 72, 78–88 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. B. Yount, R.S. Roberts, A.C. Sims, D. Deming, M.B. Frieman, J. Sparks, M.R. Denison, N. Davis, R.S. Baric, Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol. 79, 14909–14922 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. M.L. Dediego, L. Pewe, E. Alvarez, M.T. Rejas, S. Perlman, L. Enjuanes, Pathogenicity of severe acute respiratory coronavirus deletion mutants in hACE-2 transgenic mice. Virology 376, 379–389 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. A. von Brunn, C. Teepe, J.C. Simpson, R. Pepperkok, C.C. Friedel, R. Zimmer, R. Roberts, R. Baric, J. Haas, Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS ONE 2, e459 (2007). doi:10.1371/journal.pone.0000459

    Article  Google Scholar 

  54. K. Xu, B.J. Zheng, R. Zeng, W. Lu, Y.P. Lin, L. Xue, L. Li, L.L. Yang, C. Xu, J. Dai, F. Wang, Q. Li, Q.X. Dong, R.F. Yang, J.R. Wu, B. Sun, Severe acute respiratory syndrome coronavirus accessory protein 9b is a virion-associated protein. Virology 388, 279–285 (2009)

    Article  CAS  PubMed  Google Scholar 

  55. W.S. Chan, C. Wu, S.C. Chow, T. Cheung, K.F. To, W.K. Leung, P.K. Chan, K.C. Lee, H.K. Ng, D.M. Au, A.W. Lo, Coronaviral hypothetical and structural proteins were found in the intestinal surface enterocytes and pneumocytes of severe acute respiratory syndrome (SARS). Mod. Pathol. 18, 1432–1439 (2005)

    Article  CAS  PubMed  Google Scholar 

  56. M. Qiu, Y. Shi, Z. Guo, Z. Chen, R. He, R. Chen, D. Zhou, E. Dai, X. Wang, B. Si, Y. Song, J. Li, L. Yang, J. Wang, H. Wang, X. Pang, J. Zhai, Z. Du, Y. Liu, Y. Zhang, L. Li, J. Wang, B. Sun, R. Yang, Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect. 7, 882–889 (2005)

    Article  CAS  PubMed  Google Scholar 

  57. Chinese SARS Molecular Epidemiology Consortium, Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669 (2004)

    Article  Google Scholar 

  58. K.S. Saikatendu, J.S. Joseph, V. Subramanian, B.W. Neuman, M.J. Buchmeier, R.C. Stevens, P. Kuhn, Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J. Virol. 81, 3913–3921 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. C. Meier, A.R. Aricescu, D.I. Stuart, J. Grimes, R.J.C. Gilbert, R.T. Aplin, R. Assenberg, The crystal structure of ORF 9b, a lipid binding protein from the SARS Coronavirus. Structure 14, 1157–1165 (2006)

    Article  CAS  PubMed  Google Scholar 

  60. P. Stothard, The sequence manipulation suite, JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28, 1102–1104 (2000)

    CAS  PubMed  Google Scholar 

  61. P.M. Sharp, W.H. Li, The codon adaptation index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. A. Pavesi, B. De Iaco, M.I. Granero, A. Porati, On the informational content of overlapping genes in prokaryotic and eukaryotic viruses. J. Mol. Evol. 44, 625–631 (1997)

    Article  CAS  PubMed  Google Scholar 

  63. A. Pavesi, G. Magiorkinis, D.G. Karlin, Viral proteins originated de novo by overprinting can be identified by codon usage, application to the “gene nursery” of deltaretroviruses. PLoS Comput. Biol. 9, e1003162 (2013). doi:10.1371/journal.pcbi.1003162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, D.G. Higgins, Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)

    Article  CAS  PubMed  Google Scholar 

  65. P. Librado, J. Rozas, DnaSP v5, A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009)

    Article  CAS  PubMed  Google Scholar 

  66. T.A. Hall, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999)

    CAS  Google Scholar 

  67. Z. Obradovic, K. Peng, S. Vucetic, P. Radivojac, C.J. Brown, A.K. Dunker, Predicting intrinsic disorder from amino acid sequence. Proteins 53, 566–572 (2003)

    Article  CAS  PubMed  Google Scholar 

  68. L.D. Hurst, The Ka/Ks ratio, diagnosing the form of sequence evolution. Trends Genet. 8, 486 (2002)

    Article  Google Scholar 

  69. W. Lapps, B.G. Hogue, D.A. Brian, Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology 157, 47–57 (1987)

    Article  CAS  PubMed  Google Scholar 

  70. F. Fischer, D. Peng, S.T. Hingley, S.R. Weiss, P.S. Masters, The internal open reading frame within the nucleocapsid gene of mouse hepatitis virus encodes a structural protein that is not essential for viral replication. J. Virol. 71, 996–1003 (1997)

    PubMed Central  CAS  PubMed  Google Scholar 

  71. S.D. Senanayake, D.A. Brian, Bovine coronavirus I protein synthesis follows ribosomal scanning on the bicistronic N mRNA. Virus Res. 48, 101–105 (1997)

    Article  CAS  PubMed  Google Scholar 

  72. E. Calvo, M.L. DeDiego, P. Garcia, J.A. Lopez, P. Perez-Brena, A. Falcon, Severe acute respiratory syndrome coronavirus accessory proteins 6 and 9b interact in vivo. Virus Res. 169, 282–288 (2012)

    Article  CAS  PubMed  Google Scholar 

  73. C. Chang, M.H. Hou, C.F. Chang, C.D. Hsiao, T.H. Huang, The SARS coronavirus nucleocapsid protein - forms and functions. Antiviral Res. 103, 39–50 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Zhengli Shi of the Wuhan Institute of Virology, Chinese Academy of Sciences, for sharing the sequence of the SL-CoV WIV1 nucleocapsid gene with us prior to publication. This project has been supported by the “Graduate School for Computing in Medicine & Life Sciences” funded by Germany’s Excellence Initiative [DFG GSC 235/2].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Hilgenfeld.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Hilgenfeld, R. Acquisition of new protein domains by coronaviruses: analysis of overlapping genes coding for proteins N and 9b in SARS coronavirus. Virus Genes 50, 29–38 (2015). https://doi.org/10.1007/s11262-014-1139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-014-1139-8

Keywords