Skip to main content

Advertisement

Log in

Characterization of the biological properties and complete genome sequence analysis of a cattle-derived rabies virus isolate from the Guangxi province of southern China

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

In this study, a street rabies virus isolate, GXHXN, was obtained from the brain of one rabid cattle in Guangxi province of southern China. To characterize the biological properties of GXHXN, we first evaluated its pathogenicity using 4-week-old adult mice. GXHXN was highly pathogenic with a short incubation period and course of disease. Its LD50 of 10−6.86/mL is significantly higher than the LD50 of 10−5.19/mL of GXN119, a dog-derived rabies virus isolate. It also displayed a higher neurotropism index than the rRC-HL strain. However, the relative neurotropism index of GXHXN was slightly lower than that of GXN119. Analyzing antigenicity using anti-N and anti-G monoclonal antibodies (MAbs), all tested anti-N MAbs reacted similarly to GXHXN, CVS, and rRC-HL, but the reaction of anti-N MAbs to GXHXN was slightly different from GXN119. Moreover, 2/11 tested anti-G mAbs showed weaker reactivity to GXHXN than rRC-HL, whereas 4/11 showed stronger reactivity to GXHXN than CVS and GXN119, indicating that the structures of G might differ. In order to understand its genetic variation and evolution, the complete GXHXN genome sequence was determined and compared with the known 12 isolates from other mammals. A total of 42 nucleotide substitutions were found in the full-length genome, including 15 non-synonymous mutations. The G gene accounts for the highest nucleotide substitution rate of 0.70 % in ORF and an amino acid substitution rate of 0.95 %. Phylogenetic trees based on the complete genome sequence as well as the N and G gene sequences from 37 known rabies isolates from various mammals demonstrated that the GXHXN is closely related to the BJ2011E isolate from a horse in Beijing, the WH11 isolate from a donkey in Hubei, and isolates from dogs in the Fujian and Zhejiang provinces. These findings will be helpful in exploring the molecular mechanisms underlying interspecies transmission and the genetic variation of the rabies virus in different mammal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization, WHO Expert Committee on Rabies. 2004. World Health Organization, Geneva, Switzerland (2005)

  2. K.K. Conzelmann, J.H. Cox, L.G. Schneider, H.J. Thiel, Virology 175(2), 485–499 (1990)

    Article  CAS  PubMed  Google Scholar 

  3. C.E. Rupprecht, C.A. Hanlon, T. Hemachudha, Lancet Infect Dis 2, 327–343 (2002)

    Article  PubMed  Google Scholar 

  4. J.S. Smith, Clin. Microbiol. Rev. 9, 166–176 (1996)

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Y. Jiang, X. Yu, L. Wang, Z. Lu, H. Liu, H. Xuan, Z. Hu, C. Tu, Epidemiol. Infect. 136, 504–508 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. P. Ming, J. Yan, S. Rayner, S. Meng, G. Xu, Q. Tang, J. Wu, J. Luo, X. Yang, J. Gen. Virol. 91, 759–764 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. T. Xie, H. Yu, J. Wu, P. Ming, S. Huang, Z. Shen, G. Xu, J. Yan, B. Yu, D. Zhou, Virus Genes 45(3), 452–462 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. K.S. Zhang, J.H. Guo, Z.F. Xu, M. Xiang, B. Wu, H.C. Chen, Virol J. 8, 101 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  9. S. Zhang, J. Zhao, Y. Liu, A.R. Fooks, F. Zhang, R. Hu, Virus Res. 149, 143–151 (2010)

    Article  PubMed  Google Scholar 

  10. Y.Z. Zhang, C.L. Xiong, Y. Zou, D.M. Wang, R.J. Jiang, Q.Y. Xiao, Z.Y. Hao, L.Z. Zhang, Y.X. Yu, Z.F. Fu, Virus Res. 121, 179–188 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. M. Song, Q. Tang, D.M. Wang, Z.J. Mo, S.H. Guo, H. Li, X.Y. Tao, C.E. Rupprecht, Z.J. Feng, G.D. Liang, BMC Infect. Dis. 9, 210 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  12. X.Y. Tao, Q. Tang, H. Li, Z.J. Mo, H. Zhang, D.M. Wang, Q. Zhang, M. Song, A. Velasco-Villa, X. Wu, C.E. Rupprecht, G.D. Liang, Emerg. Infect. Dis. 15, 1192–1198 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Q. Liu, Y. Xiong, T.R. Luo, Y.C. Wei, S.J. Nan, F. Liu, Y. Pan, L. Feng, W. Zhu, K. Liu, J.G. Guo, H.M. Li, J. Clin. Virol. 39(4), 295–303 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. N. Ito, M. Takayama, K. Yamada, M. Sugiyama, N. Minamoto, J. Virol. 5, 9121–9128 (2001)

    Article  Google Scholar 

  15. T.R. Luo, N. Minamoto, M. Hishida, K. Yamamoto, T. Fujise, S. Hiraga, N. Ito, M. Sugiyama, T. Kinjo, Microbiol. Immunol. 42(3), 187–193 (1998)

    Article  CAS  PubMed  Google Scholar 

  16. L.J. Reed, H. Muench, Am. J. Epidemiol. 27, 493–497 (1938)

    Google Scholar 

  17. L. Geue, S. Schares, C. Schnick, J. Kliemt, A. Beckert, C. Freuling, F.J. Conraths, B. Hoffmann, R. Zanoni, D. Marston, L. McElhinney, N. Johnson, A.R. Fooks, N. Tordo, T. Müller, Vaccine 26, 3227–3235 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731–2739 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. K. Morimoto, D.C. Hooper, H. Carbaugh, Z.F. Fu, H. Koprowski, B. Dietzschold, PNAS 95, 3152–3156 (1998)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. N. Minamoto, H. Tanaka, M. Hishida, H. Goto, H. Ito, K. Yamamoto, M. Sugiyama, T. Kinjo, K. Mannen, K. Mifune, Microbiol. Immunol. 38(6), 449–455 (1994)

    Article  CAS  PubMed  Google Scholar 

  21. C. Tuffereau, H. Leblois, J. Bénéjean, P. Coulon, F. Lafay, A. Flamand, Virology 172, 206–212 (1989)

    Article  CAS  PubMed  Google Scholar 

  22. M. Takayama-Ito, N. Ito, K. Yamada, M. Sugiyama, N. Minamoto, Virus Res. 115, 169–175 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. T.L. Lentz, T.G. Burrage, A.L. Smith, J. Crick, G.H. Tignor, Science 215, 182–184 (1982)

    Article  CAS  PubMed  Google Scholar 

  24. T.L. Lentz, R.J. Benson, D. Klimowicz, P.T. Wilson, E. Hawrot, Brain Res. 387, 211–219 (1986)

    Article  CAS  PubMed  Google Scholar 

  25. L. Bracci, G. Antoni, M.G. Cusi, L. Lozzi, N. Niccolai, S. Petreni, M. Rustici, A. Santucci, P. Soldani, P.E. Valensin, P. Neri, Mol. Immunol. 25, 881–888 (1988)

    Article  CAS  PubMed  Google Scholar 

  26. X. Tang, M. Luo, S. Zhang, A.R. Fooks, R. Hu, C. Tu, Emerg. Infect. Dis. 11(12), 1970–1972 (2005)

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof Minamoto (Gifu University, Japan) for providing anti-N/G MAbs of rabies, the local veterinary stations for their valuable support in collecting samples, and Dr. Bernard Goodman for kindly editing the main text. The study is supported by the Fund Program of the Director of the Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, Guangxi University, and by the Plans for Creative Training of Post-Graduates in Guangxi University (2010.12–2011.12), and Innovation Project of Guangxi Graduate Education (20110245) to Hai-Bo Tang

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Rong Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, HB., Lu, ZL., Zhong, YZ. et al. Characterization of the biological properties and complete genome sequence analysis of a cattle-derived rabies virus isolate from the Guangxi province of southern China. Virus Genes 49, 417–427 (2014). https://doi.org/10.1007/s11262-014-1108-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-014-1108-2

Keywords

Navigation