Skip to main content
Log in

Protein–protein interactions between proteins of Citrus tristeza virus isolates

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Citrus tristeza virus (CTV) is one of the most devastating pathogens of citrus. Its genome is organized into 12 open reading frames (ORFs), of which ten ORFs located at the 3′-terminus of the genome have multiple biological functions. The ten genes at the 3′-terminus of the genome of a severe isolate (CTV-S4) and three ORFs (CP, CPm and p20) of three other isolates (N4, S45 and HB1) were cloned into pGBKT7 and pGADT7 yeast shuttle vectors. Yeast two-hybridization (Y2H) assays results revealed a strong self-interaction for CP and p20, and a unique interaction between the CPm of CTV-S4 (severe) and CP of CTV-N4 (mild) isolates. Bimolecular fluorescence complementation also confirmed these interactions. Analysis of the deletion mutants delineated the domains of CP and p20 self-interaction. Furthermore, the domains responsible for CP and p20 self-interactions were mapped at the CP amino acids sites 41–84 and p20 amino acids sites 1–21 by Y2H. This study provided new information on CTV protein interactions which will help for further understanding the biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Bar-Joseph, R. Marcus, R.F. Lee, Ann. Rev. Phytopathol. 27, 291–316 (1989)

  2. P. Moreno, S. Ambros, M.R. Albiach-Martí, J. Guerri, L. Pena, Mol. Plant Pathol. 9, 251–268 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. A.V. Karasev, Ann. Rev. Phytopathol. 38, 293–324 (2000)

    Article  CAS  Google Scholar 

  4. G. Martelli, A. Agranovsky, M. Bar-Joseph, D. Boscia, T. Candresse, R. Coutts, V. Dolja, B. Falk, D. Gonsalves, W. Jelkmann, Arch. Virol. 147, 2039–2044 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. H. Pappu, A. Karasev, E. Anderson, S. Pappu, M. Hilf, V. Febres, R. Eckloff, M. McCaffery, V. Boyko, S. Gowda, Virology 199, 35–46 (1994)

    Article  CAS  PubMed  Google Scholar 

  6. A. Karasev, V. Boyko, S. Gowda, O. Nikolaeva, M. Hilf, E. Koonin, C. Niblett, K. Cline, D. Gumpf, R. Lee, Virology 208, 511–520 (1995)

    Article  CAS  PubMed  Google Scholar 

  7. M. Mawassi, E. Mietkiewska, R. Gofman, G. Yang, M. Bar-Joseph, J. Gen. Virol. 77, 2359–2364 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. M. Vives, L. Rubio, J. Navas-Castillo, M. Albiach-Mart, W. Dawson, J. Guerri, R. Flores, P. Moreno, J. Gen. Virol. 80, 811–816 (1999)

    CAS  PubMed  Google Scholar 

  9. Z.-N. Yang, D.M. Mathews, J.A. Dodds, T.E. Mirkov, Virus Genes 19, 131–142 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. T. Satyanarayana, S. Gowda, M.A. Ayllón, W.O. Dawson, Proc. Natl. Acad. Sci. USA 101, 799–804 (2004)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. J. Navas-Castillo, M.R. Albiach-Martí, S. Gowda, M.E. Hilf, S.M. Garnsey, W.O. Dawson, Virology 228, 92–97 (1997)

    Article  CAS  PubMed  Google Scholar 

  12. V.V. Dolja, J.F. Kreuze, J. Valkonen, Virus Res. 117, 38–51 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. T. Satyanarayana, S. Gowda, M.A. Ayllón, M.R. Albiach-Martí, W.O. Dawson, Virology 300, 140–152 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. S. Tatineni, S. Gowda, W.O. Dawson, Virology 402, 262–270 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. V.A. Klaassen, D. Mayhew, D. Fisher, B.W. Falk, Virology 222, 169–175 (1996)

    Article  CAS  PubMed  Google Scholar 

  16. T. Satyanarayana, S. Gowda, V. Boyko, M. Albiach-Marti, M. Mawassi, J. Navas-Castillo, A. Karasev, V. Dolja, M. Hilf, D. Lewandowski, Proc. Natl. Acad. Sci. USA 96, 7433–7438 (1999)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. S. Tatineni, C.J. Robertson, S.M. Garnsey, M. Bar-Joseph, S. Gowda, W.O. Dawson, Virology 376, 297–307 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. S. Tatineni, C.J. Robertson, S.M. Garnsey, W.O. Dawson, Proc. Natl. Acad. Sci. USA 108, 17366–17371 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. S.Y. Folimonova, J. Virol. 86, 5554–5561 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. S. Gowda, T. Satyanarayana, C.L. Davis, J. Navas-Castillo, M.R. Albiach-Martí, M. Mawassi, N. Valkov, M. Bar-Joseph, P. Moreno, W.O. Dawson, Virology 274, 246–254 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. R. Lu, A. Folimonov, M. Shintaku, W.-X. Li, B.W. Falk, W.O. Dawson, S.-W. Ding, Proc. Natl. Acad. Sci. USA 101, 15742–15747 (2004)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. R. Ghorbel, C. LÓpez, C. Fagoaga, P. Moreno, L. Navarro, R. Flores, Peña L, Mol. Plant Pathol. 2, 27–36 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. C. Fagoaga, C. López, P. Moreno, L. Navarro, R. Flores, L. Peña, Mol. Plant Microbe Interact. 18, 435–445 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. M.R. Alaiach-Martí, C. Robertson, S. Gowda, S. Tatineni, B. Belliure, S.M. Garnsey, S.Y. Folimonova, P. Moreno, W.O. Dawson, Mol. Plant Pathol. 11, 55–67 (2010)

    Article  Google Scholar 

  25. T. Satyanarayana, S. Gowda, M.A. Ayllón, M.R. Albiach-Martí, S. Rabindran, W.O. Dawson, J. Virol. 76, 473–483 (2002)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. C. López, J. Navas-Castillo, S. Gowda, P. Moreno, R. Flores, Virology 269, 462–470 (2000)

    Article  PubMed  Google Scholar 

  27. S. Ruiz-Ruiz, N. Soler, J. Sánchez-Navarro, C. Fagoaga, C. López, L. Navarro, P. Moreno, L. Peña, R. Flores, Mol. Plant Microbe Interact. 26, 306–318 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. S. Harper, T. Dawson, M. Pearson, Arch. Virol. 155, 471–480 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. M.E. Hilf, A.V. Karasev, M.R. Albiach-Marti, W.O. Dawson, S.M. Garnsey, Phytopathology 89, 336–342 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. M.E. Hilf, V.A. Mavrodieva, S.M. Garnsey, Phytopathology 95, 909–917 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. A. Roy, R. Brlansky, Virus Res. 151, 118–130 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. C. López, M. Ayllón, J. Navas-Castillo, J. Guerri, P. Moreno, R. Flores, Phytopathology 88, 685–691 (1998)

    Article  PubMed  Google Scholar 

  33. M. Dimitrova, I. Imbert, M.P. Kieny, C. Schuster, J. Virol. 77, 5401–5414 (2003)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. D. Guo, M.-L. Rajamäki, M. Saarma, J.P. Valkonen, J. Gen. Virol. 82, 935–939 (2001)

    CAS  PubMed  Google Scholar 

  35. L. Lin, Y. Shi, Z. Luo, Y. Lu, H. Zheng, F. Yan, J. Chen, J. Chen, M. Adams, Y. Wu, Virus Res. 142, 36–40 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. L.R. Stewart, M.S. Hwang, B.W. Falk, Virus Res. 145, 293–299 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. J. Ye, J. Qu, J.-F. Zhang, Y.-F. Geng, R.-X. Fang, FEBS Lett. 583, 101–106 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. X. Zhang, X. Zhao, Y. Zhang, S. Niu, F. Qu, Y. Zhang, C. Han, J. Yu, D. Li, Virol. J. 10, 200 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. B. Jiang, N. Hong, G.-P. Wang, J. Hu, J.-K. Zhang, C.-X. Wang, Y. Liu, X.-D. Fan, Virus Genes 37, 185–192 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. I.A. Sparkes, J. Runions, A. Kearns, C. Hawes, Nat. Protoc. 1, 2019–2025 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. J.N. Bragg, A.O. Jackson, Mol. Plant Pathol. 5, 465–481 (2004)

    Article  CAS  PubMed  Google Scholar 

  42. M. Haas, A. Geldreich, M. Bureau, L. Dupuis, V. Leh, G. Vetter, K. Kobayashi, T. Hohn, L. Ryabova, P. Yot, Plant Cell 17, 927–943 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. S. Harada, R. Yalamanchili, E. Kieff, J. Virol. 75, 2482–2487 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. M. Persico, A. Ceol, C. Gavrila, R. Hoffmann, A. Florio, G. Cesareni, BMC Bioinform. 6, S21 (2005)

    Article  Google Scholar 

  45. K. Hashimoto, H. Nishi, S. Bryant, A.R. Panchenko, Phys. Biol. 8, 035007 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  46. J.E. Dayhoff, B.A. Shoemaker, S.H. Bryant, A.R. Panchenko, J. Mol. Biol. 395, 860–870 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. M. Tyagi, R.R. Thangudu, D. Zhang, S.H. Bryant, T. Madej, A.R. Panchenko, PLoS One 7, e28896 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. P. Butler, Philos. Trans. R. Soc. B Biol. Sci. 354, 537–550 (1999)

    Article  CAS  Google Scholar 

  49. S. Gowda, S. Tatineni, S.Y. Folimonova, M.E. Hilf, W.O. Dawson, Virology 389, 122–131 (2009)

    Article  CAS  PubMed  Google Scholar 

  50. A.I. Prokhnevsky, V.V. Peremyslov, A.J. Napuli, V.V. Dolja, J. Virol. 76, 11003–11011 (2002)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. L. López, A. Urzainqui, E. Domínguez, J.A. García, J. Gen. Virol. 82, 677–686 (2001)

    PubMed  Google Scholar 

  52. A. Stein, A. Céol, P. Aloy, Nucleic Acids Res. 39, D718–D723 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. J.R. Perkins, I. Diboun, B.H. Dessailly, J.G. Lees, C. Orengo, Structure 18, 1233–1243 (2010)

    Article  CAS  PubMed  Google Scholar 

  54. I. Sandler, M. Abu-Qarn, A. Aharoni, Mol. BioSyst. 9, 175–181 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. O.V. Nikolaeva, A.V. Karasev, C.A. Powell, D.J. Gumpf, S.M. Garnsey, R.F. Lee, Phytopathology 86, 974–979 (1996)

    Article  CAS  Google Scholar 

  56. L.A. Peroni, M. Lorencini, J.R.R. dos Reis, M.A. Machado, D.R. Stach-Machado, Virus Res. 145, 18–25 (2009)

    Article  CAS  PubMed  Google Scholar 

  57. M. Bashton, C. Chothia, J. Mol. Biol. 315, 927–939 (2002)

    Article  CAS  PubMed  Google Scholar 

  58. S.J. Littler, S.J. Hubbard, J. Mol. Biol. 345, 1265–1279 (2005)

    Article  CAS  PubMed  Google Scholar 

  59. D. Korkin, F.P. Davis, A. Sali, Protein Sci. 14, 2350–2360 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. J. Sherwood, J. Phytopathol. 118, 358–362 (1987)

    Article  Google Scholar 

  61. S.Y. Folimonova, C.J. Robertson, T. Shilts, A.S. Folimonov, M.E. Hilf, S.M. Garnsey, W.O. Dawson, J. Virol. 84, 1314–1325 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant No. 312721) and Chinese Ministry of Agriculture, Industry Technology Research project (Grant No. 201203076). The authors would like to thank assistant professor Xiaofeng Wang, Virginia Polytechnic Institute and State University, USA, for critical revisions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-ping Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Supplementary material 2 (DOCX 15 kb)

11262_2014_1100_MOESM3_ESM.tif

Fig. S1. Mapped region required for CP self-interaction by yeast two-hybrid assay. Full-length CP amino acid sequence and truncated mutants CPs were fused to BD, and AD vectors individually, equal volume of prey and bait were mixed and used to transformed S. cerevisiae strain Y2HGold. The transformed cells were cultured on medium and high selective media. Schematic representation of truncated CPs CP cloned into yeast shuttle vector used to test for interaction (left). Interacting pairs grew and turn blue on selective SD/QDO/X/AbA plates, and the LacZ activity was tested using β-galactosidase filter lift assay and liquid assay using ONPG with unit recorded as “Millers unit” (right).(TIFF 759 kb)

11262_2014_1100_MOESM4_ESM.tif

Fig. S2. Mapped domain of p20-p20 interacting domain. The p20 and truncated p20 fragments encoded by BD-type and AD-type plasmids used in each experiment are shown in the left columns. For galactosidase colony lift assay and quantification test by ONPG, the transformed cells were streaked onto synthetic medium and high selective media (SD-DDO/X/AbA and QDO/X/AbA) followed by incubation at 30°C for three days. The two right columns show the ability to grow on high selective media QDO/X/AbA and β-galactosidase activity with ONPG measured in “Miller’s unit” (right) (TIFF 890 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nchongboh, C.G., Wu, Gw., Hong, N. et al. Protein–protein interactions between proteins of Citrus tristeza virus isolates. Virus Genes 49, 456–465 (2014). https://doi.org/10.1007/s11262-014-1100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-014-1100-x

Keywords

Navigation