Skip to main content
Log in

The sequencing of the complete genome of a Tomato black ring virus (TBRV) and of the RNA2 of three Grapevine chrome mosaic virus (GCMV) isolates from grapevine reveals the possible recombinant origin of GCMV

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The complete genome of a Tomato black ring virus isolate (TBRV-Mirs) (RNA1, 7,366 nt and RNA2, 4,640 nt) and the RNA2 sequences (4,437; 4,445; and 4,442 nts) of three Grapevine chrome mosaic virus isolates (GCMV-H6, -H15, and -H27) were determined. All RNAs contained a single open reading frame encoding polyproteins of 254 kDa (p1) and 149 kDa (p2) for TBRV-Mirs RNA1 and RNA2, respectively, and 146 kDa for GCMV RNA2. p1 of TBRV-Mirs showed the highest identity with TBRV-MJ (94 %), Beet ringspot virus (BRSV, 82 %), and Grapevine Anatolian ringspot virus (GARSV, 66 %), while p2 showed the highest identity with TBRV isolates MJ (89 %) and ED (85 %), followed by BRSV (65 %), GCMV (58 %), and GARSV (57 %). The amino acid identity of RNA2 sequences of four GCMV isolates (three from this study and one from GenBank) ranged from 91 to 98 %, the homing protein being the most variable. The RDP3 program predicted putative intra-species recombination events for GCMV-H6 and recognized GCMV as a putative inter-species recombinant between GARSV and TBRV. In both cases, the recombination events were at the movement protein level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Sanfaçon, T. Iwanami, A.V. Karasev, R. Van der Vlugt, J. Wellink, T. Werzel, N. Yoshikawa, Family Secoviridae, pp. 881–899, in Ninth Report of the International Committee on Taxonomy of Viruses, ed. by A.M.Q. King, M.J. Adams, E.B. Carstend, E.J. Lefkowitz (Elsevier/Academic Press, San Diego, 2011), p. 1327

    Google Scholar 

  2. M. Mayo, D. Robinson, Nepoviruses: molecular biology and replication, pp. 139–185, in The plant viruses, ed. by B.D. Harrison, A.F. Murant (Springer Science, New York, 1996)

    Google Scholar 

  3. M. Serghini, M. Fuchs, M. Pinck, J. Reinbolt, B. Walter, L. Pinck, J. Gen. Virol. 71, 1433 (1990)

    Article  CAS  PubMed  Google Scholar 

  4. G.P. Martelli, Graft transmissible diseases of grapevines: handbook for detection and diagnosis (Food and Agriculture Organization of the United Nations, Rome, 1993)

    Google Scholar 

  5. M. Digiaro, T. Elbeaino, G.P. Martelli, J. Virol. Methods 141, 34 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. G.P. Martelli, E. Boudon-Padieu, Directory of infectious diseases of grapevines. Options Mediterr. Ser. B 55, 11–201 (2006)

    Google Scholar 

  7. N.A. Ghanem-Sabanadzovic, S. Sabanadzovic, M. Digiaro, G.P. Martelli, Virus Genes 30, 335 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. M. Digiaro, S. Nahdi, T. Elbeaino, Arch. Virol. 157, 2013 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. O. Le Gall, T. Candresse, V. Brault, J. Dunez, Nucl. Acids Res. 17, 7795 (1989)

    Article  PubMed Central  PubMed  Google Scholar 

  10. V. Brault, L. Hibrand, T. Candresse, O. Le Gall, J. Dunez, Nucl. Acids Res. 17, 7809 (1989)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. M. Jończyk, O. Le Gall, A. Pałucha, N. Borodynko, H. Pospieszny, Arch. Virol. 149, 799 (2004)

    Article  PubMed  Google Scholar 

  12. O. Le Gall, M. Lanneau, T. Candresse, J. Dunez, J. Gen. Virol. 76, 1279 (1995)

    Article  PubMed  Google Scholar 

  13. N. Rymelska, N. Borodynko, H. Pospiezny, B. Hasiow-Jaroszewska, Virus Genes 47, 338 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. D.B. Dunn, J.H. Hitchborn, Virol. 25, 171 (1965)

    Article  CAS  Google Scholar 

  15. T. Diener, I. Schneider, Arch. Biochem. Biophys. 124, 401 (1968)

    Article  CAS  PubMed  Google Scholar 

  16. J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular cloning: a laboratory manual, 2nd edn. (Cold Spring Harbor, 1989)

  17. U. Gubler, B.J. Hoffman, A simple and very efficient method for generating cDNA libraries. Gene 25, 263 (1983)

    Article  CAS  PubMed  Google Scholar 

  18. W.R. Pearson, D.J. Lipman, Proc. Natl. Acad. Sci. USA 85, 2444 (1988)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. C. Marck, Nucl. Acids Res. 16, 1829 (1988)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. S.F. Altschul, F. Stephen, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool. J. Mol. Biol. 215, 403 (1990)

    Article  CAS  PubMed  Google Scholar 

  21. M. Zuker, Nucl. Acids Res. 31, 3406 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. K. Tamura, J. Dudley, M. Nei, S. Kumar, Mol. Biol. Evol. 24, 1596 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. R.D. Page, TreeView (Glasgow University, Glasgow, 2001)

    Google Scholar 

  24. D.P. Martin, P. Lemey, M. Lott, V. Moulton, D. Posada, P. Lefeuvre, Bioinform. 26, 2462 (2010)

    Article  CAS  Google Scholar 

  25. D. Posada, K.A. Crandall, Proc. Natl. Acad. Sci. USA 98, 13757 (2001)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. D.P. Martin, C. Williamson, D. Posada, Bioinform. 21, 260 (2005)

    Article  CAS  Google Scholar 

  27. M. Padidam, S. Sawyer, C.M. Fauquet, Virol. 265, 218 (1999)

    Article  CAS  Google Scholar 

  28. J.M. Smith, J. Mol. Evol. 34, 126 (1992)

    CAS  PubMed  Google Scholar 

  29. M.F. Boni, D. Posada, M.W. Feldman, Genet. 176, 1035 (2007)

    Article  CAS  Google Scholar 

  30. M.J. Gibbs, J.S. Armstrong, A.J. Gibbs, Bioinform. 16, 573 (2000)

    Article  CAS  Google Scholar 

  31. E.C. Holmes, M. Worobey, A. Rambaut, Mol. Biol. Evol. 16, 405 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. K. Ohshima, Y. Tomitaka, J.T. Wood, Y. Minematsu, H. Kajiyama, K. Tomimura, A.J. Gibbs, J. Gen. Virol. 88, 298 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. G. Demangeat, O. Hemmer, C. Fritsch, O. Le Gall, T. Candresse, J. Gen. Virol. 72, 247 (1991)

    Article  CAS  PubMed  Google Scholar 

  34. G. Von Heijne, Nucl. Acids Res. 14, 4683 (1986)

    Article  Google Scholar 

  35. E. Vigne, A. Marmonier, M. Fuchs, Arch. Virol. 153, 1771 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. J. Jawhar, A. Minafra, P. La Notte, C. Pirolo, P. Saldarelli, D. Boscia, V. Savino, G.P. Martelli, pp 73–74, in Ext. abstr 16th Meeting of International Council for the Study of Virus and Virus-like Diseases of the Grapevine, ed. by Boudon-Padieu E. (Dijon, France, 2009)

  37. T.A. Mekuria, L.R. Gutha, R.R. Martin, R.A. Naidu, Phytopathol. 99, 1394 (2009)

    Article  CAS  Google Scholar 

  38. T. Elbeaino, M. Digiaro, S. Ghebremeskel, G.P. Martelli, Virus Res. 166, 136 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Elbeaino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11262_2014_1094_MOESM1_ESM.docx

Supplementary Table 1 Amino acid identity matrix of RNA1- and RNA2-encoded polyproteins (p1 and p2) of subgroup B nepoviruses. Supplementary Table 2 Amino acids identity of each single GCMV RNA2 domain (2AHP, 2BMP and 2CCP) with the homologous domain of other nepoviruses of subgroup B. Supplementary material 1 (DOCX 22 kb)

11262_2014_1094_MOESM2_ESM.docx

Supplementary Fig. 1 Recombination analyses of grapevines nepoviruses of subgroup B using RDP3. (A) Prediction of intra-specific recombination in GCMV-H6 having GCMV (NC_003621) and GCMV-H27 as parents. (B) Prediction of inter-specific recombination in GCMV-H6 having GARSV and TBRV-Mirs as parents. The highlighted windows represent the crossover region indicated for recombination sites. RDP3-implemented methods for recombination sites analyses: R (RDP), G (GENECONV), B (BOOTSCAN), M (MAXCHI), C (CHIMAERA), 3Seq (3s) and S (SISCAN). Supplementary material 2 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Digiaro, M., Yahyaoui, E., Martelli, G.P. et al. The sequencing of the complete genome of a Tomato black ring virus (TBRV) and of the RNA2 of three Grapevine chrome mosaic virus (GCMV) isolates from grapevine reveals the possible recombinant origin of GCMV. Virus Genes 50, 165–171 (2015). https://doi.org/10.1007/s11262-014-1094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-014-1094-4

Keywords

Navigation