Skip to main content
Log in

Analysis of the complete genome sequence and capsid region of black queen cell viruses from infected honeybees (Apis mellifera) in Korea

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Black queen cell virus (BQCV) infection is one of the most common viral infections in honeybees (Apis mellifera). A phylogenetic tree was constructed for 19 partial nucleotide sequences for the capsid region of South Korean BQCV, which were also compared with 10 previously reported BQCV sequences derived from different countries. The Korean BQCV genomes were highly conserved and showed 97–100 % identity. They also showed 92–99 % similarity with other country genotypes and showed no significant clustering in the phylogenetic tree. In order to investigate this phenomenon in more detail, the complete genome sequence of the Korean BQCV strain was determined and aligned with those from a South African reference strain and European genotypes, Poland4–6 and Hungary10. A phylogenetic tree was then constructed. The Korean BQCV strain showed a high level of similarity (92 %) with Hungary10, but low similarity (86 %) with the South African reference genotype. Comparison of the Korean and other sequences across different genome regions revealed that the 5′-UTR, the intergenic region, and the capsid regions of the BQCV genome were highly conserved. ORF1 (a non-structural protein coding region) was more variable than ORF2 (a structural protein coding region). The 5′-proximal third of ORF1 was particularly variable and contained several insertions/deletions. This phenomenon may be explained by intra-molecular recombination between the Korean and other BQCV genotypes; this appeared to have happened more with the South African reference strain than with the European genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van Engelsdorp, J.D. Evans, C. Saegerman, C. Mullin, E. Haubruge, B.K. Nguyen, M. Frazier, J.D. Frazier, Cox-Foster, Y. Chen, R. Underwood, D.R. Tarpy, J.S. Pettis, PLoS One 4(8), e6481 (2009)

    Article  Google Scholar 

  2. E. Genersch, M. Aubert, Vet. Res. 41, 54 (2010)

    Article  PubMed  Google Scholar 

  3. L. Bailey, R.D. Woods, J. Gen. Virol. 25, 175–186 (1977)

    Article  Google Scholar 

  4. H.H. Laidlaw Jr, Contemporary Queen Rearing (Dadant & Sons, Hamilton, 1979)

    Google Scholar 

  5. L. Bailey, Bee World 63, 165–173 (1982)

    Google Scholar 

  6. A. Allen, B. Ball, Bee World 77, 141–162 (1996)

    Google Scholar 

  7. G. Topolska, Virus Infections of Queen Brood and Queen Bees in Ten Queen Rearing Apiaries in Poland (Warsaw University of Life Sciences, Warsaw, 2008)

  8. N. Leat, B.V. Ball, V. Govan, S. Davison, J. Gen. Virol. 81, 2111–2119 (2000)

    PubMed  CAS  Google Scholar 

  9. E. Genersch, Vet. J. 169, 121–123 (2005)

    Article  PubMed  CAS  Google Scholar 

  10. O. Berenyi, T. Bakonyi, I. Derakhshifar, H. Koglberger, N. Nowotny, Appl. Environ. Microbiol. 72, 2414–2420 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. M.S. Yoo, K.C.N. Thi, P.V. Nguyen, S.H. Han, S.H. Kwon, B.S. Yoon, J. Virol. Methods 179, 195–200 (2011)

    Article  PubMed  Google Scholar 

  12. Z. Tapaszti, P. Forgach, C. Kovago, G. Topolska, N. Nowotny, M. Rusvai, T. Bakonyi, Vet. Microbiol. 139, 227–234 (2009)

    Article  PubMed  CAS  Google Scholar 

  13. Y. Kojima, T. Toki, T. Morimoto, M. Yoshiyama, K. Kimura, T. Kadowaki, Microb. Ecol. 62, 895–906 (2011)

    Article  PubMed  Google Scholar 

  14. J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, Nucl. Acids Res. 25, 4876–4882 (1997)

    Article  PubMed  CAS  Google Scholar 

  15. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731–2739 (2011)

    Article  PubMed  CAS  Google Scholar 

  16. M. Kimura, J. Mol. Evol. 16, 111–120 (1980)

    Article  PubMed  CAS  Google Scholar 

  17. S.C. Ray, Simplot for windows 98/NT/2000/XP version 3.5.1 (2003)

  18. E. Grabensteiner, W. Ritter, M.J. Carter, S. Davison, H. Pechhacker, J. Kolodziejek, O. Boecking, I. Derakshifar, R. Moosbeckhofer, E. Licek, N. Nowotny, Clin. Diagn. Lab. Immunol. 8, 93–104 (2001)

    PubMed  CAS  Google Scholar 

  19. T. Bakonyi, E. Grabensteiner, J. Kolodziejek, M. Rusvai, G. Topolska, W. Ritter, N. Nowontny, Appl. Environ. Microbiol. 68, 6446–6450 (2002)

    Article  PubMed  CAS  Google Scholar 

  20. O. Berenyi, T. Bakonyi, I. Derakhshifar, H. Koglberger, G. Topolska, W. Ritter, H. Pechhacker, N. Nowotny, Appl. Environ. Microbiol. 73, 3605–3611 (2007)

    Article  PubMed  CAS  Google Scholar 

  21. J. Sasaki, N. Nakashima, J. Virol. 73, 1219–1226 (1999)

    PubMed  CAS  Google Scholar 

  22. J.A. Wicker, M.C. Whiteman, D.W. Beasley, C.T. Davis, S. Zhang, B.S. Schneider, S. Higgs, R.M. Kinney, A.D. Barrett, Virology 349, 245–253 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. B.A. Tews, E.M. Schurmann, G. Meyers, J. Virol. 83, 4823–4834 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Animal, Plant and Fisheries Quarantine and Inspection Agency, Korean Ministry of Agriculture and Forestry, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kondreddy Eswar Reddy or Seung Won Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, K.E., Noh, J.H., Choe, S.E. et al. Analysis of the complete genome sequence and capsid region of black queen cell viruses from infected honeybees (Apis mellifera) in Korea. Virus Genes 47, 126–132 (2013). https://doi.org/10.1007/s11262-013-0902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-013-0902-6

Keywords

Navigation