Advertisement

Virus Genes

, Volume 46, Issue 3, pp 441–446 | Cite as

Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing

  • Xiu-Feng WanEmail author
  • J. Lamar  Barnett
  • Fred Cunningham
  • Si Chen
  • Guohua Yang
  • Shannon Nash
  • Li-Ping Long
  • Lorelei Ford
  • Sherry Blackmon
  • Yan Zhang
  • Larry Hanson
  • Qiang He
Article

Abstract

Metagenomic characterization of water virome was performed in four Mississippi catfish ponds. Although differing considerably from African swine fever virus (ASFV), 48 of 446,100 sequences from 12 samples were similar enough to indicate that they represent new members in the family Asfarviridae. At present, ASFV is the only member of Asfarviridae, and this study presents the first indication of a similar virus in North America. At this point, there is no indication that the identified virus(es) pose a threat to human or animal health, and further study is needed to characterize their potential risks to both public health and agricultural development.

Keywords

African swine fever virus Catfish pond Freshwater Metagenomics Mississippi Delta Asfarviridae 

Notes

Acknowledgments

We thank Mary Duke and Dr. Brian Scheffler at USDA-ARS, Mid-South Area Genomics Laboratory, Stoneville, MS for genomic sequencing. This Project was supported by USDA APHIS NWRC Award 1174280807CA 12030306 and NIH RC1AI086830 to XFW.

References

  1. 1.
    A. Djikeng, R. Kuzmickas, N.G. Anderson, D.J. Spiro, Metagenomic analysis of RNA viruses in a fresh water lake. PLoS ONE 4, e7264 (2009)PubMedCrossRefGoogle Scholar
  2. 2.
    T.J. Inglis, S.C. Garrow, M. Henderson, A. Clair, J. Sampson, L. O’Reilly, B. Cameron, Burkholderia pseudomallei traced to water treatment plant in Australia. Emerg. Infect. Dis. 6, 56–59 (2000)PubMedGoogle Scholar
  3. 3.
    J.E. Kaplan, R.A. Goodman, L.B. Schonberger, E.C. Lippy, G.W. Gary, Gastroenteritis due to Norwalk virus: an outbreak associated with a municipal water system. J. Infect. Dis. 146, 190–197 (1982)PubMedCrossRefGoogle Scholar
  4. 4.
    H. Leclerc, L. Schwartzbrod, E. Dei-Cas, Microbial agents associated with waterborne diseases. Crit. Rev. Microbiol. 28, 371–409 (2002)PubMedCrossRefGoogle Scholar
  5. 5.
    W.J. Lodder, H.H. van den Berg, S.A. Rutjes, A.M. de Roda Husman, Presence of enteric viruses in source waters for drinking water production in the Netherlands. Appl. Environ. Microbiol. 76, 5965–5971 (2010)PubMedCrossRefGoogle Scholar
  6. 6.
    J. Loh, G. Zhao, R.M. Presti, L.R. Holtz, S.R. Finkbeiner, L. Droit, Z. Villasana, C. Todd, J.M. Pipas, B. Calgua, R. Girones, D. Wang, H.W. Virgin, Detection of novel sequences related to African swine fever virus in human serum and sewage. J. Virol. 83, 13019–13025 (2009)PubMedCrossRefGoogle Scholar
  7. 7.
    W.R. MacKenzie, J.J. Kazmierczak, J.P. Davis, An outbreak of cryptosporidiosis associated with a resort swimming pool. Epidemiol. Infect. 115, 545–553 (1995)PubMedCrossRefGoogle Scholar
  8. 8.
    K.D. Mena, C.P. Gerba, Waterborne adenovirus. Rev. Environ. Contam. Toxicol. 198, 133–167 (2009)PubMedGoogle Scholar
  9. 9.
    A. Monier, J.M. Claverie, H. Ogata, Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 9, R106 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    H. Ogata, K. Toyoda, Y. Tomaru, N. Nakayama, Y. Shirai, J.M. Claverie, K. Nagasaki, Remarkable sequence similarity between the dinoflagellate-infecting marine girus and the terrestrial pathogen African swine fever virus. Virol. J. 6, 178 (2009)PubMedCrossRefGoogle Scholar
  11. 11.
    P. Payment, M. Trudel, S.A. Sattar, V.S. Springthorpe, T.P. Subrahmanyan, B.E. Gregory, A.H. Vajdic, P. Blaskovic, I.J. Guglielmi, O. Kudrewko, Virological examination of drinking water: a Canadian collaborative study. Can. J. Microbiol. 30, 105–112 (1984)PubMedCrossRefGoogle Scholar
  12. 12.
    A.L. Polaczyk, J. Narayanan, T.L. Cromeans, D. Hahn, J.M. Roberts, J.E. Amburgey, V.R. Hill, Ultrafiltration-based techniques for rapid and simultaneous concentration of multiple microbe classes from 100-L tap water samples. J. Microbiol. Methods 73, 92–99 (2008)PubMedCrossRefGoogle Scholar
  13. 13.
    M. Punta, P.C. Coggill, R.Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clements, A. Heger, L. Holm, E.L. Sonnhammer, S.R. Eddy, A. Bateman, R.D. Finn, The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 (2012)PubMedCrossRefGoogle Scholar
  14. 14.
    C.S. Tucker, The ecology of channel catfish culture ponds in Northwest Mississippi. Rev. Fish. Sci. 4, 1–55 (1996)CrossRefGoogle Scholar
  15. 15.
    R.L. Vogt, H.E. Sours, T. Barrett, R.A. Feldman, R.J. Dickinson, L. Witherell, Campylobacter enteritis associated with contaminated water. Ann. Intern. Med. 96, 292–296 (1982)PubMedCrossRefGoogle Scholar
  16. 16.
    N.L. Yozwiak, P. Skewes-Cox, M.D. Stenglein, A. Balmaseda, E. Harris, J.L. DeRisi, Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Negl. Trop. Dis. 6, e1485 (2012)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xiu-Feng Wan
    • 1
    Email author
  • J. Lamar  Barnett
    • 1
  • Fred Cunningham
    • 2
  • Si Chen
    • 3
  • Guohua Yang
    • 1
  • Shannon Nash
    • 1
  • Li-Ping Long
    • 1
  • Lorelei Ford
    • 1
  • Sherry Blackmon
    • 1
  • Yan Zhang
    • 3
  • Larry Hanson
    • 1
  • Qiang He
    • 3
  1. 1.Department of Basic SciencesCollege of Veterinary Medicine, Mississippi State UniversityMississippi stateUSA
  2. 2.USDA/APHIS/WS, National Wildlife Research CenterMississippi stateUSA
  3. 3.Department of Civil and Environmental EngineeringThe University of TennesseeKnoxvilleUSA

Personalised recommendations