Skip to main content
Log in

Full genome analysis of a novel type II feline coronavirus NTU156

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Infections by type II feline coronaviruses (FCoVs) have been shown to be significantly correlated with fatal feline infectious peritonitis (FIP). Despite nearly six decades having passed since its first emergence, different studies have shown that type II FCoV represents only a small portion of the total FCoV seropositivity in cats; hence, there is very limited knowledge of the evolution of type II FCoV. To elucidate the correlation between viral emergence and FIP, a local isolate (NTU156) that was derived from a FIP cat was analyzed along with other worldwide strains. Containing an in-frame deletion of 442 nucleotides in open reading frame 3c, the complete genome size of NTU156 (28,897 nucleotides) appears to be the smallest among the known type II feline coronaviruses. Bootscan analysis revealed that NTU156 evolved from two crossover events between type I FCoV and canine coronavirus, with recombination sites located in the RNA-dependent RNA polymerase and M genes. With an exchange of nearly one-third of the genome with other members of alphacoronaviruses, the new emerging virus could gain new antigenicity, posing a threat to cats that either have been infected with a type I virus before or never have been infected with FCoV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. C. Dye, S.G. Siddell, J. Gen. Virol. 86, 2249–2253 (2005)

    Article  PubMed  CAS  Google Scholar 

  2. C. Dye, S.G. Siddell, J. Feline, Med. Surg. 9, 202–213 (2007)

    Google Scholar 

  3. G. Tekes, R. Hofmann-Lehmann, I. Stallkamp, V. Thiel, H.J. Thiel, J. Virol. 82, 1851–1859 (2008)

    Article  PubMed  CAS  Google Scholar 

  4. D. Vijaykrishna, G.J. Smith, J.X. Zhang, J.S. Peiris, H. Chen, Y. Guan, J. Virol. 81, 4012–4020 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. N.C. Pedersen, J.F. Boyle, K. Floyd, A. Fudge, J. Barker, Am. J. Vet. Res. 42, 368–377 (1981)

    PubMed  CAS  Google Scholar 

  6. N.C. Pedersen, J. Feline, Med. Surg. 11, 225–258 (2009)

    Google Scholar 

  7. N.C. Pedersen, J.W. Black, J.F. Boyle, J.F. Evermann, A.J. McKeirnan, R.L. Ott, Adv. Exp. Med. Biol. 173, 365–380 (1984)

    Article  PubMed  CAS  Google Scholar 

  8. N.C. Pedersen, J. Ward, W.L. Mengeling, Arch. Virol. 58, 45–53 (1978)

    Article  PubMed  CAS  Google Scholar 

  9. T. Hohdatsu, S. Okada, Y. Ishizuka, H. Yamada, H. Koyama, J. Vet. Med. Sci. 54, 557–562 (1992)

    Article  PubMed  CAS  Google Scholar 

  10. C.N. Lin, B.L. Su, C.H. Wang, M.W. Hsieh, T.J. Chueh, L.L. Chueh, Vet. Microbiol. 136, 233–239 (2009)

    Article  PubMed  CAS  Google Scholar 

  11. D.D. Addie, I.A. Schaap, L. Nicolson, O. Jarrett, J. Gen. Virol. 84, 2735–2744 (2003)

    Article  PubMed  CAS  Google Scholar 

  12. V. Benetka, A. Kubber-Heiss, J. Kolodziejek, N. Nowotny, M. Hofmann-Parisot, K. Mostl, Vet. Microbiol. 99, 31–42 (2004)

    Article  PubMed  Google Scholar 

  13. A. Duarte, I. Veiga, L. Tavares, Vet. Microbiol. 138, 163–168 (2009)

    Article  PubMed  CAS  Google Scholar 

  14. M. Kummrow, M.L. Meli, M. Haessig, E. Goenczi, A. Poland, N.C. Pedersen, R. Hofmann-Lehmann, H. Lutz, Clin. Diagn. Lab. Immunol. 12, 1209–1215 (2005)

    PubMed  CAS  Google Scholar 

  15. N. Shiba, K. Maeda, H. Kato, M. Mochizuki, H. Iwata, Vet. Microbiol. 124, 348–352 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. H. Vennema, Vet. Microbiol. 69, 139–141 (1999)

    Article  PubMed  CAS  Google Scholar 

  17. A.A. Herrewegh, I. Smeenk, M.C. Horzinek, P.J. Rottier, R.J. de Groot, J. Virol. 72, 4508–4514 (1998)

    PubMed  CAS  Google Scholar 

  18. M.M.C. Lai, S. Perlman, L.J. Anderson, in Fields Virology, ed. by D.M. Knipe, P.M. Howley, D.E. Griffin, R.A. Lamb, M.A. Martin, B. Roizman, S.E.E. Straus (Lippincott Williams & Wilkins, Philadelphia, 2007), pp. 1305–1335

    Google Scholar 

  19. C.C. Hon, T.Y. Lam, Z.L. Shi, A.J. Drummond, C.W. Yip, F. Zeng, P.Y. Lam, F.C. Leung, J. Virol. 82, 1819–1826 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. J. Stavrinides, D.S. Guttman, J. Virol. 78, 76–82 (2004)

    Article  PubMed  CAS  Google Scholar 

  21. K. Pyrc, R. Dijkman, L. Deng, M.F. Jebbink, H.A. Ross, B. Berkhout, L. van der Hoek, J. Mol. Biol. 364, 964–973 (2006)

    Article  PubMed  CAS  Google Scholar 

  22. P.C. Woo, S.K. Lau, C.C. Yip, Y. Huang, H.W. Tsoi, K.H. Chan, K.Y. Yuen, J. Virol. 80, 7136–7145 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. J.E. Brooks, A.C. Rainer, R.L. Parr, P. Woolcock, F. Hoerr, E.W. Collisson, Virus Res. 100, 191–198 (2004)

    Article  PubMed  CAS  Google Scholar 

  24. W. Jia, K. Karaca, C.R. Parrish, S.A. Naqi, Arch. Virol. 140, 259–271 (1995)

    Article  PubMed  CAS  Google Scholar 

  25. J.G. Kusters, E.J. Jager, J.A. Lenstra, G. Koch, W.P. Posthumus, R.H. Meloen, B.A. van der Zeijst, J. Immunol. 143, 2692–2698 (1989)

    PubMed  CAS  Google Scholar 

  26. L. Wang, D. Junker, E.W. Collisson, Virology 192, 710–716 (1993)

    Article  PubMed  CAS  Google Scholar 

  27. C.N. Lin, B.L. Su, C.W. Wu, L.E. Hsieh, L.L. Chueh, Taiwan Vet. J. 35, 145–152 (2009)

    CAS  Google Scholar 

  28. K.S. Lole, R.C. Bollinger, R.S. Paranjape, D. Gadkari, S.S. Kulkarni, N.G. Novak, R. Ingersoll, H.W. Sheppard, S.C. Ray, J. Virol. 73, 152–160 (1999)

    PubMed  CAS  Google Scholar 

  29. D.P. Martin, P. Lemey, M. Lott, V. Moulton, D. Posada, P. Lefeuvre, Bioinformatics 26, 2462–2463 (2010)

    Article  PubMed  CAS  Google Scholar 

  30. D.B. Tresnan, R. Levis, K.V. Holmes, J. Virol. 70, 8669–8674 (1996)

    PubMed  CAS  Google Scholar 

  31. S. Perlman, J. Netland, Nat. Rev. Microbiol. 7, 439–450 (2009)

    Article  PubMed  CAS  Google Scholar 

  32. H.W. Chang, R.J. de Groot, H.F. Egberink, P.J. Rottier, J. Gen. Virol. 91, 415–420 (2010)

    Article  PubMed  CAS  Google Scholar 

  33. L. Du, Y. He, Y. Zhou, S. Liu, B.J. Zheng, S. Jiang, Nat. Rev. Microbiol. 7, 226–236 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Ling Chueh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11262_2012_864_MOESM1_ESM.jpg

Supplementary Fig. 1 Phylogenetic relationships constructed using nsp1-11 (a), N gene (b), and ORF7 (c) sequences of FCoV NTU156 and other alphacoronaviruses. Analysis was performed using MEGA 4 software and neighbor-joining methods based on 1,000 replicates. Bootstrap support values greater than 90 are shown (JPEG 1680 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CN., Chang, RY., Su, BL. et al. Full genome analysis of a novel type II feline coronavirus NTU156. Virus Genes 46, 316–322 (2013). https://doi.org/10.1007/s11262-012-0864-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-012-0864-0

Keywords