Abstract
Infections by type II feline coronaviruses (FCoVs) have been shown to be significantly correlated with fatal feline infectious peritonitis (FIP). Despite nearly six decades having passed since its first emergence, different studies have shown that type II FCoV represents only a small portion of the total FCoV seropositivity in cats; hence, there is very limited knowledge of the evolution of type II FCoV. To elucidate the correlation between viral emergence and FIP, a local isolate (NTU156) that was derived from a FIP cat was analyzed along with other worldwide strains. Containing an in-frame deletion of 442 nucleotides in open reading frame 3c, the complete genome size of NTU156 (28,897 nucleotides) appears to be the smallest among the known type II feline coronaviruses. Bootscan analysis revealed that NTU156 evolved from two crossover events between type I FCoV and canine coronavirus, with recombination sites located in the RNA-dependent RNA polymerase and M genes. With an exchange of nearly one-third of the genome with other members of alphacoronaviruses, the new emerging virus could gain new antigenicity, posing a threat to cats that either have been infected with a type I virus before or never have been infected with FCoV.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
C. Dye, S.G. Siddell, J. Gen. Virol. 86, 2249–2253 (2005)
C. Dye, S.G. Siddell, J. Feline, Med. Surg. 9, 202–213 (2007)
G. Tekes, R. Hofmann-Lehmann, I. Stallkamp, V. Thiel, H.J. Thiel, J. Virol. 82, 1851–1859 (2008)
D. Vijaykrishna, G.J. Smith, J.X. Zhang, J.S. Peiris, H. Chen, Y. Guan, J. Virol. 81, 4012–4020 (2007)
N.C. Pedersen, J.F. Boyle, K. Floyd, A. Fudge, J. Barker, Am. J. Vet. Res. 42, 368–377 (1981)
N.C. Pedersen, J. Feline, Med. Surg. 11, 225–258 (2009)
N.C. Pedersen, J.W. Black, J.F. Boyle, J.F. Evermann, A.J. McKeirnan, R.L. Ott, Adv. Exp. Med. Biol. 173, 365–380 (1984)
N.C. Pedersen, J. Ward, W.L. Mengeling, Arch. Virol. 58, 45–53 (1978)
T. Hohdatsu, S. Okada, Y. Ishizuka, H. Yamada, H. Koyama, J. Vet. Med. Sci. 54, 557–562 (1992)
C.N. Lin, B.L. Su, C.H. Wang, M.W. Hsieh, T.J. Chueh, L.L. Chueh, Vet. Microbiol. 136, 233–239 (2009)
D.D. Addie, I.A. Schaap, L. Nicolson, O. Jarrett, J. Gen. Virol. 84, 2735–2744 (2003)
V. Benetka, A. Kubber-Heiss, J. Kolodziejek, N. Nowotny, M. Hofmann-Parisot, K. Mostl, Vet. Microbiol. 99, 31–42 (2004)
A. Duarte, I. Veiga, L. Tavares, Vet. Microbiol. 138, 163–168 (2009)
M. Kummrow, M.L. Meli, M. Haessig, E. Goenczi, A. Poland, N.C. Pedersen, R. Hofmann-Lehmann, H. Lutz, Clin. Diagn. Lab. Immunol. 12, 1209–1215 (2005)
N. Shiba, K. Maeda, H. Kato, M. Mochizuki, H. Iwata, Vet. Microbiol. 124, 348–352 (2007)
H. Vennema, Vet. Microbiol. 69, 139–141 (1999)
A.A. Herrewegh, I. Smeenk, M.C. Horzinek, P.J. Rottier, R.J. de Groot, J. Virol. 72, 4508–4514 (1998)
M.M.C. Lai, S. Perlman, L.J. Anderson, in Fields Virology, ed. by D.M. Knipe, P.M. Howley, D.E. Griffin, R.A. Lamb, M.A. Martin, B. Roizman, S.E.E. Straus (Lippincott Williams & Wilkins, Philadelphia, 2007), pp. 1305–1335
C.C. Hon, T.Y. Lam, Z.L. Shi, A.J. Drummond, C.W. Yip, F. Zeng, P.Y. Lam, F.C. Leung, J. Virol. 82, 1819–1826 (2008)
J. Stavrinides, D.S. Guttman, J. Virol. 78, 76–82 (2004)
K. Pyrc, R. Dijkman, L. Deng, M.F. Jebbink, H.A. Ross, B. Berkhout, L. van der Hoek, J. Mol. Biol. 364, 964–973 (2006)
P.C. Woo, S.K. Lau, C.C. Yip, Y. Huang, H.W. Tsoi, K.H. Chan, K.Y. Yuen, J. Virol. 80, 7136–7145 (2006)
J.E. Brooks, A.C. Rainer, R.L. Parr, P. Woolcock, F. Hoerr, E.W. Collisson, Virus Res. 100, 191–198 (2004)
W. Jia, K. Karaca, C.R. Parrish, S.A. Naqi, Arch. Virol. 140, 259–271 (1995)
J.G. Kusters, E.J. Jager, J.A. Lenstra, G. Koch, W.P. Posthumus, R.H. Meloen, B.A. van der Zeijst, J. Immunol. 143, 2692–2698 (1989)
L. Wang, D. Junker, E.W. Collisson, Virology 192, 710–716 (1993)
C.N. Lin, B.L. Su, C.W. Wu, L.E. Hsieh, L.L. Chueh, Taiwan Vet. J. 35, 145–152 (2009)
K.S. Lole, R.C. Bollinger, R.S. Paranjape, D. Gadkari, S.S. Kulkarni, N.G. Novak, R. Ingersoll, H.W. Sheppard, S.C. Ray, J. Virol. 73, 152–160 (1999)
D.P. Martin, P. Lemey, M. Lott, V. Moulton, D. Posada, P. Lefeuvre, Bioinformatics 26, 2462–2463 (2010)
D.B. Tresnan, R. Levis, K.V. Holmes, J. Virol. 70, 8669–8674 (1996)
S. Perlman, J. Netland, Nat. Rev. Microbiol. 7, 439–450 (2009)
H.W. Chang, R.J. de Groot, H.F. Egberink, P.J. Rottier, J. Gen. Virol. 91, 415–420 (2010)
L. Du, Y. He, Y. Zhou, S. Liu, B.J. Zheng, S. Jiang, Nat. Rev. Microbiol. 7, 226–236 (2009)
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
11262_2012_864_MOESM1_ESM.jpg
Supplementary Fig. 1 Phylogenetic relationships constructed using nsp1-11 (a), N gene (b), and ORF7 (c) sequences of FCoV NTU156 and other alphacoronaviruses. Analysis was performed using MEGA 4 software and neighbor-joining methods based on 1,000 replicates. Bootstrap support values greater than 90 are shown (JPEG 1680 kb)
Rights and permissions
About this article
Cite this article
Lin, CN., Chang, RY., Su, BL. et al. Full genome analysis of a novel type II feline coronavirus NTU156. Virus Genes 46, 316–322 (2013). https://doi.org/10.1007/s11262-012-0864-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11262-012-0864-0


