Skip to main content

Genetic diversity of Hungarian Maize dwarf mosaic virus isolates


The genetic diversity of the coat-protein (CP) region and the untranslated C-terminal region (3′UTR) of Maize dwarf mosaic virus (MDMV) was analyzed to evaluate the variability between isolates (inter-isolate sequence diversity). The results of inter-isolate sequence diversity analysis showed that the diversity of the MDMV CP gene is fairly high (p-distance: up to 0.136). During sequence analysis, a 13 amino-acid residue insertion and an 8 amino-acid residue deletion were found within the N-terminal region of the CP gene. The phylogenetic analysis showed that—unlike other potyvirus species in this subgroup—the MDMV isolates could not be distinguished on the basis of their host plants or geographic origins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. I. Sum, E. Sebestyén, I. Papp, A. Liszt, Növénytermelés (Crop Production) 28, 309–315 (1979)

    Google Scholar 

  2. J. Szirmai, Acta Phytopathol. Hung. 3, 189–198 (1968)

    Google Scholar 

  3. U. Oertel, J. Schubert, E. Fuchs, Arch. Virol. 142, 675–687 (1997). doi:10.1007/s007050050110

    Article  CAS  PubMed  Google Scholar 

  4. M.F. Pfosser, H. Baumann, Arch. Virol. 147, 1599–1609 (2002). doi:10.1007/s00705-002-0839-x

    Article  CAS  PubMed  Google Scholar 

  5. P. Kong, H.H. Steinbiss, Arch. Virol. 143, 1791–1799 (1998). doi:10.1007/s007050050417

    Article  CAS  PubMed  Google Scholar 

  6. M.A. Achon, L. Serrano, N. Alonso-Dueñas, C. Porta, Arch. Virol. 152, 2073–2078 (2007). doi:10.1007/s00705-007-1042-x

    Article  CAS  PubMed  Google Scholar 

  7. S. Kumar, M. Nei, J. Dudley, K. Tamura, Briefings Bioinformatics 9, 299–306 (2008). doi:10.1093/bib/bbn017

    Article  CAS  Google Scholar 

  8. D.D. Shukla, P.M. Strike, S.L. Tracy, K.H. Gough, C.W. Ward, J. Gen. Virol. 69, 1497–1508 (1988)

    Article  CAS  Google Scholar 

  9. M. Bousalem, E.J. Douzery, D.J. Fargette, J. Gen. Virol. 81, 243–255 (2000)

    CAS  PubMed  Google Scholar 

  10. B. Moury, C. Morel, E. Johansen, M. Jacquemond, J. Gen. Virol. 83, 2563–2573 (2002)

    CAS  PubMed  Google Scholar 

  11. O.M. Alegria, M. Royer, M. Bousalem, M. Chatenet, M. Peterschmitt, J.C. Girard, P. Rott, Arch. Virol. 148, 357–372 (2003). doi:10.1007/s00705-002-0916-1

    Article  CAS  PubMed  Google Scholar 

  12. K. Ohshima, Y. Yamaguchi, R. Hirota, T. Hamamoto, K. Tomimura, Z. Tan, T. Sano, F. Azuhata, J.A. Walsh, J. Fletcher, J. Chen, A. Gera, A. Gibbs, J. Gen. Virol. 83, 1511–1521 (2002)

    CAS  PubMed  Google Scholar 

  13. F. Sánchez, X. Wang, C.E. Jenner, J. Walsh, F. Ponz, Virus Res. 94, 33–43 (2003)

    Article  PubMed  Google Scholar 

  14. D.L. Xu, J.W. Park, T.E. Mirkov, G.H. Zhou, Arch. Virol. 153, 1031–1039 (2008). doi:10.1007/s00705-008-0072-3

    Article  PubMed  Google Scholar 

  15. I. Tóbiás, L.J. Palkovics, J. Phytopathol. 152, 445–447 (2004). doi:10.1111/j.1439-0434.2004.00863.x

    Article  Google Scholar 

  16. P. Lehmann, K. Petrzik, C. Jenner, A. Greenland, J. Spak, E. Kozubek, J.A. Walsh, Physiol. Mol. Plant Path. 51, 195–208 (1997)

    Article  CAS  Google Scholar 

  17. M.J. Frenkel, J.M. Jilka, N.M. McKern, P.M. Strike, J.M. Clark Jr, D.D. Shukla, C.W. Ward, J. Gen. Virol. 72, 237–242 (1991)

    Article  CAS  PubMed  Google Scholar 

  18. S.S. Pappu, H.R. Pappu, E.P. Rybicki, C.L. Niblett, J. Gen. Virol. 75, 239–242 (1994)

    Article  CAS  PubMed  Google Scholar 

  19. D.D. Shukla, M.J. Frenkel, C.W. Ward, Can. J. Plant Pathol. 13, 178–191 (1991)

    CAS  Google Scholar 

  20. K. Farreyrol, M.N. Pearson, M. Grisoni, D. Cohen, D. Beck, Arch. Virol. 151, 905–915 (2006). doi:10.1007/s00705-005-0680-0

    Article  CAS  PubMed  Google Scholar 

  21. Z. Ullah, B. Chai, S. Hammar, B. Raccah, A. Gal-On, R. Grumat, Physiol. Mol. Plant Pathol. 63, 129–139 (2003). doi:10.1016/j.pmpp.2003.11.001

    Article  CAS  Google Scholar 

Download references


This study was supported by grants from the German Academic Exchange Service (DAAD) and the Hungarian Scientific Research Fund (OTKA NI 61023). Computer analysis was supported by the AGRISAFE EU FP7 grant agreement No. 203288. Thanks are due to Dr. Éva Toldi, Cereal Research Institute Szeged, and Tamás Spitkó, Maize Department, Agricultural Research Institute, Martonvásár, for their help in sample collection. The authors are grateful to B. Harasztos for revising the manuscript linguistically.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kathrin Petrik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1: Isolates of MDMV used for phylogenetic analysis. (DOC 225 kb)


Table 2: Analysis of the contribution of various parameters to the genetic diversity of MDMV CP gene nucleotide sequences. (DOC 27 kb)

Table 3: Symptom expression of the 32 MDMV samples tested by inoculation on their natural hosts. (DOC 57 kb)


Fig. 3: Typical examples of the four symptom caterogies: mild mosaic, mosaic, severe mosaic and striped mosaic used for symptom differentation. (JPG 947 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gell, G., Balázs, E. & Petrik, K. Genetic diversity of Hungarian Maize dwarf mosaic virus isolates. Virus Genes 40, 277–281 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Genetic diversity
  • Evolution
  • Potyvirus
  • Maize