Skip to main content

Identification and characterization of a novel thymidylate synthase from deep-sea thermophilic bacteriophage Geobacillus virus E2

Abstract

Thymidylate synthase (TS) is essential for de novo synthesis of dTMP and is a key enzyme involved in DNA synthesis and transcriptional regulation of organisms. Due to their biologic importance, TSs have been intensively studied. In this investigation, a thermostable TS was identified from a deep-sea thermophilic bacteriophage Geobacillus virus E2 (GVE2). It was demonstrated that GVE2-TS was highly homologous to known TSs and contained five characteristic conserved domains. The temporal analyses by Northern and Western blots revealed that the GVE2-TS was transcribed and expressed early after Geobacillus virus E2 infection, identifying it as a viral early gene. As shown by gel mobility shift assays, the recombinant GVE2-TS protein had the capacity to bind its own mRNA. Our study presented the first report on thymidylate synthase from deep-sea thermophilic bacteriophage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    R.L. Blakely, in Folates and Pteridines, vol. 1, ed. by R.L. Blakely, S.J. Benkovic (Wiley, New York, 1984), pp. 191–253

    Google Scholar 

  2. 2.

    C.W. Carreras, D.V. Santi, Annu. Rev. Biochem. 64, 721–762 (1995). doi:https://doi.org/10.1146/annurev.bi.64.070195.003445

    CAS  Article  Google Scholar 

  3. 3.

    S. Kaneda, K. Takeishi, D. Ayusawa, K. Shimizu, T. Seno, S. Altman, Nucleic Acids Res. 15, 1259–1270 (1987). doi:https://doi.org/10.1093/nar/15.3.1259

    CAS  Article  Google Scholar 

  4. 4.

    E. Chu, D.M. Koeller, P.G. Johnston, S. Zinn, C.J. Allegra, Mol. Pharmacol. 43, 527–533 (1993)

    CAS  PubMed  Google Scholar 

  5. 5.

    K. Keyomarsi, J. Samet, G. Molnar, A.B. Pardee, J. Biol. Chem. 268, 15142–15149 (1993)

    CAS  PubMed  Google Scholar 

  6. 6.

    J. Carey, V. Cameron, P.L. de Haseth, O.C. Uhlenbeck, Biochemistry 22, 2601–2610 (1983). doi:https://doi.org/10.1021/bi00280a002

    CAS  Article  Google Scholar 

  7. 7.

    R.B. Winter, L. Morrissey, P. Gauss, L. Gold, T. Hsu, J. Karam, Proc. Natl. Acad. Sci. USA 84, 7822–7826 (1987). doi:https://doi.org/10.1073/pnas.84.22.7822

    CAS  Article  Google Scholar 

  8. 8.

    M. Andrake, N. Guild, T. Hsu, L. Gold, C. Tuerk, J. Karam, Proc. Natl. Acad. Sci. USA 85, 7942–7946 (1988). doi:https://doi.org/10.1073/pnas.85.21.7942

    CAS  Article  Google Scholar 

  9. 9.

    J.L. Yates, A.E. Arfsten, M. Nomura, Proc. Natl. Acad. Sci. USA 77, 1837–1841 (1980). doi:https://doi.org/10.1073/pnas.77.4.1837

    CAS  Article  Google Scholar 

  10. 10.

    L. Gold, Annu. Rev. Biochem. 57, 199–233 (1988). doi:https://doi.org/10.1146/annurev.bi.57.070188.001215

    CAS  Article  Google Scholar 

  11. 11.

    G. Spedding, T.C. Gluick, D.E. Draper, J. Mol. Biol. 229, 609–622 (1993). doi:https://doi.org/10.1006/jmbi.1993.1067

    CAS  Article  Google Scholar 

  12. 12.

    X. Xiang, L. Chen, X. Huang, Y. Luo, Q. She, L. Huang, J. Virol. 79, 8677–8686 (2005). doi:https://doi.org/10.1128/JVI.79.14.8677-8686.2005

    CAS  Article  Google Scholar 

  13. 13.

    E. Chu, T. Cogliati, S.M. Copur, A. Borre, D.M. Voeller, C.J. Allegra et al., Nucleic Acids Res. 24, 3222–3228 (1996). doi:https://doi.org/10.1093/nar/24.16.3222

    CAS  Article  Google Scholar 

  14. 14.

    K.M. Perry, E.B. Fauman, J.S. Finer-Moore, W.R. Montfort, G.F. Maley, F. Maley et al., Proteins 8, 315–333 (1990). doi:https://doi.org/10.1002/prot.340080406

    CAS  Article  Google Scholar 

  15. 15.

    Z. Newby, T.T. Lee, R.J. Morse, Y. Liu, L. Liu, P. Venkatraman et al., Biochemistry 45, 7415–7428 (2006). doi:https://doi.org/10.1021/bi060152s

    CAS  Article  Google Scholar 

  16. 16.

    M. Belfort, G. Maley, J. Pedersen-Lane, F. Maley, Proc. Natl. Acad. Sci. USA 80, 4914–4918 (1983). doi:https://doi.org/10.1073/pnas.80.16.4914

    CAS  Article  Google Scholar 

  17. 17.

    F.K. Chu, G.F. Maley, F. Maley, M. Belfort, Proc. Natl. Acad. Sci. USA 81, 3049–3053 (1984). doi:https://doi.org/10.1073/pnas.81.10.3049

    CAS  Article  Google Scholar 

  18. 18.

    R.W. Honess, W. Bodemer, K.R. Cameron, H.H. Niller, B. Fleckenstein, R.E. Randall, Proc. Natl. Acad. Sci. USA 83, 3604–3608 (1986). doi:https://doi.org/10.1073/pnas.83.11.3604

    CAS  Article  Google Scholar 

  19. 19.

    C.E. Garrett, J.A. Coderre, T.D. Meek, E.P. Garvey, D.M. Claman, S.M. Beverley et al., Mol. Biochem. Parasitol. 11, 257–265 (1984). doi:https://doi.org/10.1016/0166-6851(84)90070-7

    CAS  Article  Google Scholar 

  20. 20.

    S.M. Beverley, T.E. Ellenberger, J.S. Cordingley, Proc. Natl. Acad. Sci. USA 83, 2584–2588 (1986). doi:https://doi.org/10.1073/pnas.83.8.2584

    CAS  Article  Google Scholar 

  21. 21.

    C.L. Afonso, E.R. Tulman, Z. Lu, E. Oma, G.F. Kutish, D.L. Rock, J. Virol. 73, 533–552 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    A. Henne, H. Brüggemann, C. Raasch, A. Wiezer, T. Hartsch, H. Liesegang et al., Nat. Biotechnol. 22, 547–553 (2004). doi:https://doi.org/10.1038/nbt956

    CAS  Article  Google Scholar 

  23. 23.

    T. Naryshkina, J. Liu, L. Florens, S.K. Swanson, A.R. Pavlov, N.V. Pavlova et al., J. Mol. Biol. 364, 667–677 (2006). doi:https://doi.org/10.1016/j.jmb.2006.08.087

    CAS  Article  Google Scholar 

  24. 24.

    I.I. Mathews, A.M. Deacon, J.M. Canaves, D. McMullan, S.A. Lesley, S. Agarwalla et al., Structure 11, 677–690 (2003). doi:https://doi.org/10.1016/S0969-2126(03)00097-2

    CAS  Article  Google Scholar 

  25. 25.

    A. Kanai, A. Sato, J. Imoto, M. Tomita, Biochem. J. 393, 373–379 (2006). doi:https://doi.org/10.1042/BJ20050608

    CAS  Article  Google Scholar 

  26. 26.

    B. Liu, S.J. Wu, Q. Song, X.B. Zhang, L.H. Xie, Curr. Microbiol. 53, 163–166 (2006). doi:https://doi.org/10.1007/s00284-005-0509-9

    CAS  Article  Google Scholar 

  27. 27.

    E. Harlow, D. Lane, Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1988), pp. 553–612

    Google Scholar 

  28. 28.

    J.C. Alwine, D.J. Kemp, G.R. Stark, Proc. Natl. Acad. Sci. USA 74, 5350–5354 (1977). doi:https://doi.org/10.1073/pnas.74.12.5350

    CAS  Article  Google Scholar 

  29. 29.

    D.H. Wei, X.B. Zhang, Virus Genes 36, 273–278 (2007). doi:https://doi.org/10.1007/s11262-007-0170-4

    Article  Google Scholar 

  30. 30.

    E. Chu, S.M. Copur, J. Ju, T.M. Chen, S. Khleif, D.M. Voeller et al., Mol. Cell. Biol. 19, 1582–1594 (1999)

    CAS  Article  Google Scholar 

  31. 31.

    G. Chiericatti, D.V. Santi, Biochemistry 37, 9038–9042 (1998). doi:https://doi.org/10.1021/bi9802770

    CAS  Article  Google Scholar 

  32. 32.

    Y. Tong, X. Liu-Chen, E.A. Ercikan-Abali, G.M. Capiaux, S.-C. Zhao, D. Banerjee et al., J. Biol. Chem. 273, 11611–11618 (1998). doi:https://doi.org/10.1074/jbc.273.19.11611

    CAS  Article  Google Scholar 

  33. 33.

    O. Melefors, M.W. Hentze, Bioessays 15, 85–90 (1993). doi:https://doi.org/10.1002/bies.950150203

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (40576076), the China Ocean Mineral Resources R&D Association (DYXM-115-02-2-15), and Hi-Tech Research and Development Program of China (863 program of China) (2007AA091407).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Zhang, X. Identification and characterization of a novel thymidylate synthase from deep-sea thermophilic bacteriophage Geobacillus virus E2. Virus Genes 37, 218–224 (2008). https://doi.org/10.1007/s11262-008-0258-5

Download citation

Keywords

  • Thermophilic bacteriophage Geobacillus virus E2 (GVE2)
  • Thymidylate synthase
  • Gene
  • mRNA–protein interaction