Skip to main content

Advertisement

Log in

Permeabilization of the plasma membrane by Ebola virus GP2

  • Original Article
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The glycoprotein (GP) of Ebola virus (EBOV) is a multifunctional protein known to play a role in virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. EBOV GP is synthesized as a precursor which is subsequently cleaved to yield two disulfide-linked subunits: GP1 (surface-exposed [SU] subunit) and GP2 (membrane-anchored [TM] subunit). We sought to determine the effect of membrane-anchored GP2 protein expression on the integrity of host cell lipid membranes. Our findings indicated that: (i) expression of GP2 enhanced membrane permeability to hygromycin-B (hyg-B), (ii) the transmembrane (TM) domain of GP2 was essential for enhanced membrane permeability, (iii) amino acids (aa) 667ALF669 within the TM region of GP2 were important for enhanced membrane permeability, and (iv) EBOV infected cells were more permeable to hyg-B than mock infected cells. Together, these data suggest that the TM region of GP2 modifies the permeability of the plasma membrane. These findings may have important implications for GP-induced cell damage and pathogenesis of EBOV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. L.H. Elliott, M.P. Kiley, J.B. McCormick, Virology 147(1), 169–176 (1985)

    Article  CAS  PubMed  Google Scholar 

  2. H. Feldmann, H.D. Klenk, A. Sanchez, Arch. Virol. Suppl. 7, 81–100 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. A. Sanchez et al., Virus Res. 29(3), 215–240 (1993)

    Article  CAS  PubMed  Google Scholar 

  4. A. Sanchez et al., J. Virol. 72(8), 6442–6447 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. V.E. Volchkov et al., Proc. Natl. Acad. Sci. USA 95(10), 5762–5767 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. S.Y. Chan, M.C. Ma, M.A. Goldsmith, J. Gen. Virol. 81(Pt 9), 2155–2159 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Z.Y. Yang et al., Nat. Med. 6(8), 886–889 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. J.M. Licata et al., J. Virol. 78(14), 7344–7351 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. Simmons et al., J. Virol. 76(5), 2518–2528 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Takada et al., Virology 278(1), 20–26 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. W. Weissenhorn et al., Mol. Cell 2(5), 605–616 (1998)

    Article  CAS  PubMed  Google Scholar 

  12. S. Watanabe et al., J. Virol. 74(21), 10194–10201 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. W. Weissenhorn et al., Proc. Natl. Acad. Sci. USA 95(11), 6032–6036 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. V.N. Malashkevich et al., Proc. Natl. Acad. Sci. USA 96(6), 2662–2667 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. H. Ito et al., J. Virol. 73(10), 8907–8912 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Arroyo et al., J. Virol. 69(7), 4095–4102 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. E.P. Browne, A.R. Bellamy, J.A. Taylor, J. Gen. Virol. 81(Pt 8), 1955–1959 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. A.R. Ciccaglione et al., Virology 250(1), 1–8 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. A.R. Ciccaglione et al., Virus Res. 104(1), 1–9 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. K. Newton et al., J. Virol. 71(12), 9458–9465 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. A.S. de Jong et al., J. Biol. Chem. 278(2), 1012–1021 (2003)

    Article  PubMed  Google Scholar 

  22. Z. Han, R.N. Harty, J. Biol. Chem. 279(41), 43092–43097 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. J.M. Licata et al., J. Virol. 77(3), 1812–1819 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Z. Han et al., J. Virol. 77(3), 1793–1800 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J.S. Towner et al., Virology 332(1), 20–27 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. R.W. Doms, G. Russ, J.W. Yewdell, J. Cell Biol. 109(1), 61–72 (1989)

    Article  CAS  PubMed  Google Scholar 

  27. G. Bodelon et al., J. Biol. Chem. 277(20), 17789–17796 (2002)

    Article  PubMed  CAS  Google Scholar 

  28. M.E. Gonzalez, L. Carrasco, FEBS Lett. 552(1), 28–34 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. J. Lama, L. Carrasco, FEBS Lett. 367(1), 5–11 (1995)

    Article  CAS  PubMed  Google Scholar 

  30. R. Aldabe, A. Barco, L. Carrasco, J. Biol. Chem. 271(38), 23134–23137 (1996)

    Article  CAS  PubMed  Google Scholar 

  31. M.E. Gonzalez, L. Carrasco, Biochemistry 37(39), 13710–13719 (1998)

    Article  CAS  PubMed  Google Scholar 

  32. M. Perez et al., Virology 235(2), 342–351 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. Y.S. Chang et al., J. Virol. 73(8), 6257–6264 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. M.A. Sanz, L. Perez, L. Carrasco, J. Biol. Chem. 269(16), 12106–12110 (1994)

    CAS  PubMed  Google Scholar 

  35. G. Pisani et al., Biochem. Biophys. Res. Commun. 211(2), 627–638 (1995)

    Article  CAS  PubMed  Google Scholar 

  36. M. Jecht, C. Probst, V. Gauss-Muller, Virology 252(1), 218–227 (1998)

    Article  CAS  PubMed  Google Scholar 

  37. R. Guinea, L. Carrasco, FEBS Lett. 343(3), 242–246 (1994)

    Article  CAS  PubMed  Google Scholar 

  38. A. Agirre et al., J. Biol. Chem. 277(43), 40434–40441 (2002)

    Article  CAS  PubMed  Google Scholar 

  39. F.J. van Kuppeveld et al., Embo. J. 16(12), 3519–3532 (1997)

    Article  PubMed  PubMed Central  Google Scholar 

  40. P.J. Gatti et al., AIDS Res. Hum. Retroviruses 14(10), 885–892 (1998)

    Article  CAS  PubMed  Google Scholar 

  41. L. Chernomordik et al., J. Virol. 68(11), 7115–7123 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. A.M. Comardelle et al., AIDS Res. Hum. Retroviruses 13(17), 1525–1532 (1997)

    Article  CAS  PubMed  Google Scholar 

  43. A. Charpilienne et al., J. Gen. Virol. 78(Pt 6), 1367–1371 (1997)

    Article  CAS  PubMed  Google Scholar 

  44. Y. Dong et al., Proc. Natl. Acad. Sci. USA 94(8), 3960–3965 (1997)

    Article  CAS  PubMed  Google Scholar 

  45. A.R. Ciccaglione et al., J. Gen. Virol. 82(Pt 9), 2243–2250 (2001)

    Article  CAS  PubMed  Google Scholar 

  46. C.M. Sanderson et al., J. Virol. 70(2), 905–914 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the members of the Harty lab for insightful comments, and Shiho Irie for technical support. This work was supported by NIH grant AI46499 to R.N.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald N. Harty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Z., Licata, J.M., Paragas, J. et al. Permeabilization of the plasma membrane by Ebola virus GP2. Virus Genes 34, 273–281 (2007). https://doi.org/10.1007/s11262-006-0009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-006-0009-4

Keywords