Skip to main content

Advertisement

Log in

The Molecular Mechanism of Human Resistance to HIV-1 Infectionin Persistently Infected Individuals—A Review, Hypothesis and Implications

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Resistance to HIV-1 infection in Europeans is associated with a mutation in the gene that codes for the CCR5 protein that is present in Th2 cells and serves as a coreceptor for HIV-1 R5 strain. A deletion of 32 amino acids from the cytokine receptor prevents infection. This mutation prevails in Europeans and is absent in Africans. However, duplication of a gene that codes for a chemokine that binds to the CCR5 was discovered in Africans (mean gene copy 6 while in non-Africans the mean gene copy is 3). Higher expression of these genes protects T cells against HIV-1 infection in vitro. It should be noted that resistance to HIV-1 R5 variant does not protect against HIV-1 R4 variant. It was reported that a minority of highly HIV-1 exposed African professional sex workers (APSW) were resistant to the virus infection during a 10 years period. Recently, the analysis of the cytokines in the serum of the persistently infected seronegative women revealed that the latter hypo-expresses the cytokine IL-4. Since the molecular events during HIV-1 infection are associated with a marked increase in the levels of IL-4 and IgE in the sera of the infected individuals, it suggests that AIDS is an allergy. Thus, a very low level of IL-4 production may abrogate the virus infection. Studies on the human IL-4 gene revealed that together with the IL-4 mRNA a spliced variant with a deletion of exon 2 is synthesized. The latter is a natural antagonist of IL-4 and when expressed in an individual at a level higher than IL-4, the person will resist a microbial infection (e.g. Mycobacterium tuberculosis) or asthma. The present hypothesis suggests that the HIV-1 resistant APSWs produce more IL-4 delta 2 molecules than IL-4 molecules. The binding of IL–4 delta 2 to IL-4 receptors on T and B cells prevents their functions and the infection by HIV-1. The implications of these studies are that treatment of HIV-1 infected people with drugs that will block the IL-4 receptors will stop HIV-1 infections and the determination of the levels of IL-4 and IL-4 delta 2 in the sera of HIV-1+ patients will enable to identify the individuals that have a natural resistance to HIV-l/AIDS and those who need treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Paxton S.R. Martin D Tse T.R. O’Brien J. Skurnick N.L. Van Devanter N. Padian J.E. Braub D.P. Kotler S.M. Wolinsky R.A. Koup (1996) Nature Med 2 412–417 Occurrence Handle10.1038/nm0496-412 Occurrence Handle1:CAS:528:DyaK28XitVKmtr4%3D Occurrence Handle8597950

    Article  CAS  PubMed  Google Scholar 

  2. R. Liu W.A. Paxton S. Choe D. Ceradini R. Horuk M.E. Mac Donald H. Stuhlmann R.A. Koup N.R. Landau (1996) Cell 86 367–377 Occurrence Handle10.1016/S0092-8674(00)80110-5 Occurrence Handle1:CAS:528:DyaK28XltVSks7k%3D Occurrence Handle8756719

    Article  CAS  PubMed  Google Scholar 

  3. W. Klitz C. Brautbar A.M. Schito L. Barcellos J.R. Oksenberg (2001) Human Immunol 62 530–538 Occurrence Handle10.1016/S0198-8859(01)00239-7 Occurrence Handle1:CAS:528:DC%2BD3MXjtFGjsLw%3D

    Article  CAS  Google Scholar 

  4. J.J. Martinson N.H. Chapman D.C. Rees Y-T. Liu J.B. Clegg (1997) Nature Genet 16 100–102 Occurrence Handle10.1038/ng0597-100 Occurrence Handle1:CAS:528:DyaK2sXivFKhsbc%3D Occurrence Handle9140404

    Article  CAS  PubMed  Google Scholar 

  5. H.W. Sheppard C. Celum N.L. Michael S. O’Brien M. Dean M. Carrington D. Dale S.P. Buchbinder (2002) J Acquired Immune Deficiency Syndrome (JAIDS) 29 307–313

    Google Scholar 

  6. Gonzlez E., Kulkarni H., Bolivar H., Mangano A., Sanchez R., Catano G., Nibbs R.J., Freedman B.I., Quinones M.P., Bamshad M.J., Murphy K.K., Rovin B.H., Bradely W., Clark R.A., Anderson S.A., O’Connel R.J., Agan B.K., Ahuja S.S., Bologna R., Sen L., Dolan M.J., and Ahuja S.K. Scienceexpress/www.scienceexpress org/6 January 2005/page l/10.1126/science.1101160.

  7. S. Rowland -Jones J. Sutton K. Ariyoshi T. Dong F. Gotch S. McAdam D. Whitby S. Sabally A. Gallimore T. Corrah M. Takiguchi A. McMichael H. Whittle (1995) Nature Med 1 59–64 Occurrence Handle10.1038/nm0195-59 Occurrence Handle7584954

    Article  PubMed  Google Scholar 

  8. Trivedi H.N., Plummer F.A., Anzala A.O., Njagi E., Bwayo J,J., Ngugi E.N., Embree J.E., and Hayglass K.T., FASEB J.(June 18, 2001) 10..1096/fj.00–0619fje.

  9. K.R. Fowke N.J.D. Nagelkerke J. Kimani J.N. Simonson A.O. Anzala J.J. Bwayo K.S. MacDonald E.N. Ngugi F.A. Plummer (1996) The Lancet 348 1347–1351 Occurrence Handle10.1016/S0140-6736(95)12269-2 Occurrence Handle1:STN:280:ByiD2srpsFE%3D

    Article  CAS  Google Scholar 

  10. K.R. Fowke T. Dong S.L. Rowlan-Jones J. Oyugi W.J. Rutherford J. Kraus J.N. Simonsen G.M. Shearer F.A. Plummer (1998) Aids Res Hum Retroviruses 14 1530

    Google Scholar 

  11. R. Kaul F.A. Plummer J. Kimani T. Dong P. Kiama T. Rostron E. Niagi K.S. MacDonald J.J. Bwayo A. McMichael S.L. Rowland-Jones (2000) J Immunol 164 1602–1611 Occurrence Handle1:CAS:528:DC%2BD3cXot1KitA%3D%3D Occurrence Handle10640781

    CAS  PubMed  Google Scholar 

  12. R. Kaul S.L. Rowland-Jones J. Kimani K. Fowke T. Dong P. Kiama J. Rutherford E. Njagi F. Mwangi T. Rostron J. Onyango K.S. MacDonald J.J. Bwayo F.A. Plummer (2001) Immun Lett 79 341–349

    Google Scholar 

  13. R. Kaul S.L. Rowland-Jones J. Kimani T. Dong H-B. Yang P. Kiama T. Rostron E. Njagi J.J. Bwayo K.S. MacDonald J.J. McMichael F.A. Plummer (2001) J Clin Invest 107 341–349 Occurrence Handle1:CAS:528:DC%2BD3MXhtVGitbo%3D Occurrence Handle11160158

    CAS  PubMed  Google Scholar 

  14. R. Kaul D. Trabattoni J.J. Bwayo D. Arienti A. Zagliani F.M. Mwangi C. Kariuki E.N. Ngugi K.S. MacDonald T.B. Bagll M. Clerici F.A. Plummer (1999) AIDS 13 23–29 Occurrence Handle10.1097/00002030-199901140-00004 Occurrence Handle1:STN:280:DyaK1M3itl2nug%3D%3D Occurrence Handle10207541

    Article  CAS  PubMed  Google Scholar 

  15. W. Jennes B. Vuylsteke M.Y. Borget V. Traore-Ettiegne C. Maurice M. Nolan J.N. Nkerrgasong (2004) J Infect Dis 189 602–610 Occurrence Handle10.1086/381454 Occurrence Handle14767812

    Article  PubMed  Google Scholar 

  16. Y. Becker (2004) Virus Genes 28 1–14

    Google Scholar 

  17. Y. Becker (2004) Virus Genes 28 319–331 Occurrence Handle10.1023/B:VIRU.0000025778.56507.61 Occurrence Handle1:CAS:528:DC%2BD2cXjsVOrur0%3D Occurrence Handle15266113

    Article  CAS  PubMed  Google Scholar 

  18. Y. Becker (2004) Virus Genes 29 147–165 Occurrence Handle10.1023/B:VIRU.0000032797.43537.d3 Occurrence Handle1:CAS:528:DC%2BD2cXltVOnt74%3D Occurrence Handle15215692

    Article  CAS  PubMed  Google Scholar 

  19. Y. Becker (2005) Virus Genes 30 127–131 Occurrence Handle10.1007/s11262-004-4590-0 Occurrence Handle1:CAS:528:DC%2BD2MXhslKksL0%3D Occurrence Handle15744571

    Article  CAS  PubMed  Google Scholar 

  20. Y. Becker (2005) Virus Genes 30 251–266 Occurrence Handle10.1007/s11262-004-5632-2 Occurrence Handle1:CAS:528:DC%2BD2MXhslKktrg%3D Occurrence Handle15744581

    Article  CAS  PubMed  Google Scholar 

  21. Y Becker (2004) ASM News 70 565–570

    Google Scholar 

  22. N. Arai D. Nomura D. Villaret R. DeWaall Malefijt M. Seiki M. Yoshida S. Minoshima R. Fukuyama M. Maekawa J. Kudoh N. Shimizu K. Yokota E. Abe T. Yokota Y. Takebe K. Arai (1989) J Immunol 142 274–282 Occurrence Handle1:CAS:528:DyaK3cXhvFarsb0%3D Occurrence Handle2535858

    CAS  PubMed  Google Scholar 

  23. M.R. Walter W.J. Cook B.J. Zhao R.P. Cameron Jr. S.E. Ealick R.L. Walter P. Reichert T.L. Nagabhushan p.p. Trotto C.E. Bugg (1992) J Biol Chem 267 20371–20376 Occurrence Handle1:CAS:528:DyaK38XlsV2jsbs%3D Occurrence Handle1400355

    CAS  PubMed  Google Scholar 

  24. W.J. Alms S.P. Atamas V.V. Yurovsky B. White (1996) Mol Immunol 33 361–370 Occurrence Handle10.1016/0161-5890(95)00154-9 Occurrence Handle1:CAS:528:DyaK28XjvVKmsLc%3D Occurrence Handle8676887

    Article  CAS  PubMed  Google Scholar 

  25. G. Avensa J. Punnonen B.G. Cocks R.W. Malefit F. Vega SuffixJr S.M. Zurawski J. deVries (1993) J Exp Med 178 2213–2218 Occurrence Handle10.1084/jem.178.6.2213 Occurrence Handle7504061

    Article  PubMed  Google Scholar 

  26. S.C. Klein J.G. Golverdinger D.F. Wichen Particlevan A.G.M. Bouwens I. Stuij M.G. J. Tilanus E.J.E.G. Bast R.A. Weger Particlede (1996) Cell Immunol 167 259–268 Occurrence Handle10.1006/cimm.1996.0034 Occurrence Handle1:CAS:528:DyaK28Xps1CqtQ%3D%3D Occurrence Handle8603435

    Article  CAS  PubMed  Google Scholar 

  27. S. P. Atamas J. Choi V.V. Yurovsky B.J. White (1996) Immunol 156 435–441 Occurrence Handle1:CAS:528:DyaK28XksV2lsw%3D%3D

    CAS  Google Scholar 

  28. Y. Arinobu S.P. Atamas T. Otsuka H. Niiro K. Yamaoka Y. Niho N. Hamasaki B. White K. Izuhara (1999) Cell Immunol 191 161–167 Occurrence Handle10.1006/cimm.1998.1431 Occurrence Handle1:CAS:528:DyaK1MXhtVKktrY%3D Occurrence Handle9973539

    Article  CAS  PubMed  Google Scholar 

  29. Demissie A., Abebe M., Aseffa A., Graham R., Fletcher H., Zumla A., Weldingh K., Brock I., Andersen P., Deherty T.M., and the VACSEL study group. J Immunol 172, 6938–6943, 2004.

    Google Scholar 

  30. Fletcher H.A., Owiafe P., Jeffries D., Hill P., Rook G.A.W., Zumla A., Doherty T.M., Brookes R.H., and the VACSEL study group. Immunology 112, 669–673, 2004.

    Google Scholar 

  31. G.T. Seah P.S. Gao J.M. Hopkin G.A.M. Rook (2001) Am J Respir Crit care Med 164 1016–1018 Occurrence Handle1:STN:280:DC%2BD3MrmtFyqtw%3D%3D Occurrence Handle11587989

    CAS  PubMed  Google Scholar 

  32. L.I. Sakkas C. Tiurtellotte S. Berny A.R. Myers C.D. Platsoucas (1999) Clin Diagn Lab Immunol 6 660–664 Occurrence Handle1:CAS:528:DyaK1MXmsVGrtb0%3D Occurrence Handle10473513

    CAS  PubMed  Google Scholar 

  33. G.T. Seah G.A. Rook (1999) J Immunol Method 228 139–149 Occurrence Handle10.1016/S0022-1759(99)00084-8 Occurrence Handle1:CAS:528:DyaK1MXntVCitL8%3D

    Article  CAS  Google Scholar 

  34. E.M. Glare M. Divijak M.J. Bally E.N. Walters (2001) Thorax 56 541–548 Occurrence Handle10.1136/thorax.56.7.541 Occurrence Handle1:STN:280:DC%2BD3MzltVSktQ%3D%3D Occurrence Handle11413353

    Article  CAS  PubMed  Google Scholar 

  35. A.E. Kelly-Welsh E.M. Hanson M.R. Boothby A.D. Keegan (2003) Science 300 1527–1528 Occurrence Handle10.1126/science.1085458 Occurrence Handle12791978

    Article  PubMed  Google Scholar 

  36. P.J. Easterbrook (1999) J Infect 38 71–73 Occurrence Handle10.1016/S0163-4453(99)90071-3 Occurrence Handle1:STN:280:DyaK1M3nt1SksA%3D%3D Occurrence Handle10342644

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yechiel Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, Y. The Molecular Mechanism of Human Resistance to HIV-1 Infectionin Persistently Infected Individuals—A Review, Hypothesis and Implications. Virus Genes 31, 113–119 (2005). https://doi.org/10.1007/s11262-005-2503-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-005-2503-5

Keywords

Navigation