Abstract
The emergence of antimicrobial resistant Enterococcus spp., a main cause of untreatable nosocomial infection, in food animals and dissemination to humans is a public health risk. The study was performed to determine the prevalence and antimicrobial resistance, and virulence characteristics of Enterococcus faecalis and Enterococcus faecium in food animals and meats in Bangladesh. Enterococcus spp., were confirmed using sodA gene specific PCR, and antimicrobial resistance and virulence properties were characterized by PCR. Enterococcus spp. were recovered from 57% of the collected samples (n = 201/352). Farm samples yielded significantly higher (p ≤ 0.05) prevalence (62%) than that of retail meat samples (41%). E. faecalis (52%) is most frequently isolated species. Greater proportions of isolates exhibited resistance to tetracycline (74%), erythromycin (65%) and ciprofloxacin (34%). Fifty-one isolates are vancomycin non-susceptible enterococci (VNSE), of which forty-seven are MDR and twenty are linezolid resistant, a last line drug for VNSE. Virulence factors such as gelatinase (gelE), aggregation factor (asa1) and sex pheromone (cpd) are detected along with vancomycin resistance gene (vanA, vanB and vanC2/C3) in VNSE isolates. The high prevalence of MDR enterococci in food animals and retail meats may cause consumers infections with concomitant reduction of available therapeutic options.
This is a preview of subscription content, access via your institution.

Code or data availability
On Request.
References
Agudelo HN, Huycke MM (2014) Enterococcal disease, epidemiology, and implications for treatment. Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston
Ahmed I, Rabbi MB, Sultana S (2019) Antibiotic resistance in Bangladesh: a systematic review. Int J Infect Dis 80:54–61. https://doi.org/10.1016/j.ijid.2018.12.017
Ahmed MO, Baptiste KE (2018) Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist 24(5):590–606. https://doi.org/10.1089/mdr.2017.0147
Akram Hossain M (2016) Antimicrobial susceptibility pattern of enterococci isolated from clinical specimens at Mymensingh medical college hospital, Mymensingh. Bangladesh J Bacteriol Mycol Open Access 3(3). https://doi.org/10.15406/jbmoa.2016.03.00061
Ali SA, Hasan KA, Bin Asif H, Abbasi A (2014) Environmental enterococci: I. prevalence of virulence, antibiotic resistance and species distribution in poultry and its related environment in K arachi, P akistan. Lett Appl Microbiol 58(5):423–432. https://doi.org/10.1111/lam.12208
Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10(4):266–278. https://doi.org/10.1038/nrmicro2761
Aslam M, Diarra MS, Checkley S, Bohaychuk V, Masson L (2012) Characterization of antimicrobial resistance and virulence genes in Enterococcus spp. isolated from retail meats in Alberta, Canada. Int J Food Microbiol 156(3):222–230. https://doi.org/10.1016/j.ijfoodmicro.2012.03.026
Banik A, Mohammad N, Akter T, Fatema K, Abony M (2018) Prevalence, identification and antibiotic susceptibility of Enterococcus species isolated from chicken and pigeon meat in Gazipur area of Bangladesh. Open J Med Microbiol 8(3):74–83. https://doi.org/10.4236/ojmm.2018.83007
Bennani M, Amarouch H, Oubrim N, Cohen N (2012) Identification and antimicrobial resistance of fecal enterococci isolated in coastal mediterranean environments of Morocco. Eur J Sci Res 70(2):266–275
Bialvaei AZ, Rahbar M, Yousefi M, Asgharzadeh M, Kafil HS (2017) Linezolid: a promising option in the treatment of gram-positives. J Antimicrob Chemother 72(2):354–364. https://doi.org/10.1093/jac/dkw450
Boehm AB, Sassoubre LM (2014) Enterococci as indicators of environmental fecal contamination. Feb 5. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (eds) Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston
Cassenego APV, d’Azevedo PA, Ribeiro AML, Frazzon J, Van Der Sand ST, Frazzon APG (2011) Species distribution and antimicrobial susceptibility of enterococci isolated from broilers infected experimentally with Eimeria spp and fed with diets containing different supplements. Brazilian J Microbiol 42(2):480–488. https://doi.org/10.1590/s1517-838220110002000012
Clark NC, Teixeira LM, Facklam RR, Tenover FC (1998) Detection and differentiation of vanC-1, vanC-2, and vanC-3 glycopeptide resistance genes in enterococci. J Clin Microbiol 36(8):2294–2297. https://doi.org/10.1128/jcm.36.8.2294-2297.1998
Coque TM (2008) Evolutionary biology of pathogenic enterococci. In: Baquero F, Nombela C, Cassell GH, Guitierrez JA (eds) Evolutionary biology of bacterial and fungal pathogens. ASM Press, Washington, DC, pp 501–521
Cosentino S, Podda GS, Corda A, Fadda ME, Deplano M, Pisano MB (2010) Molecular detection of virulence factors and antibiotic resistance pattern in clinical Enterococcus faecalis strains in Sardinia. J Prev Med Hyg 51(1):31–36
DGDA (2018) Directorate general of drug administration allopathic drug database Bangladesh. http://www.dgda.gov.bd/. Accessed 15 Sept 2021
Downing MA, Xiong J, Eshaghi A, McGeer A, Patel SN, Johnstone J (2015) Vancomycin-variable enterococcal bacteremia. J Clin Microbiol 53(12):3951–3953. https://doi.org/10.1128/jcm.02046-15
Guerrero-Ramos E, Molina-González D, Blanco-Morán S, Igrejas G, Poeta P, Alonso-Calleja C et al (2016) Prevalence, antimicrobial resistance, and genotypic characterization of vancomycin-resistant enterococci in meat preparations. J Food Prot 79(5):748–756. https://doi.org/10.4315/0362-028x.jfp-15-390
Hammerum AM, Lester CH, Heuer OE (2010) Antimicrobial-resistant enterococci in animals and meat: a human health hazard? Foodborne Pathog Dis 7(10):1137–1146. https://doi.org/10.1089/fpd.2010.0552
Hoelzer K, Wong N, Thomas J, Talkington K, Jungman E, Coukell A (2017) Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence? BMC Vet Res 13(1):1–38. https://doi.org/10.1186/s12917-017-1131-3
Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3(5):421–569. https://doi.org/10.4161/viru.21282
Hong HJ, Hutchings MI, Buttner MJ (2008) Vancomycin resistance VanS/VanR two-component systems. Adv Exp Med Biol 631:200–213. https://doi.org/10.1007/978-0-387-78885-2_14
Huq A, Haley BJ, Taviani E, Chen A, Hasan NA, Colwell RR (2012) Detection, isolation, and identification of vibrio cholerae from the environment. Curr Protoc Microbiol 6(6 A.5). https://doi.org/10.1002/9780471729259.mc06a05s26
Imam T, Gibson JS, Foysal M, Das SB, Das GS, Fournié G et al (2020) A cross-sectional study of antimicrobial usage on commercial broiler and layer chicken farms in Bangladesh. Front Vet Sci 7(December):1–11. https://doi.org/10.3389/fvets.2020.576113
Jackson CR, Fedorka-Cray PJ, Barrett JB (2004) Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42(8):3558–3565. https://doi.org/10.1128/jcm.42.8.3558-3565.2004
Kuiken T, Leighton FA, Fouchier RA, LeDuc JW, Peiris JS, Schudel A, Stöhr K, Osterhaus AD (2005) Public health. Pathogen surveillance in animals. Science 9 309(5741):1680–1681. https://doi.org/10.1126/science.1113310
Lebreton F, Willems RJL, Gilmore MS (2014) Enterococcus diversity, origins in nature, and gut colonization. Enterococci: from commensals to leading causes of drug resistant infection. Massachusetts Eye and Ear Infirmary, Boston
López-Salas P, Llaca-Díaz J, Morfin-Otero R, Tinoco JC, Rodriguez-Noriega E, Salcido-Gutierres L et al (2013) Virulence and antibiotic resistance of enterococcus faecalis clinical isolates recovered from three states of mexico. Detection of linezolid resistance. Arch Med Res 44(6):422–428. https://doi.org/10.1016/j.arcmed.2013.07.003
Maasjost J, Mühldorfer K, De Jäckel SC, Hafez HM (2015) Antimicrobial susceptibility patterns of enterococcus faecalis and enterococcus faecium isolated from poultry flocks in Germany. Avian Dis 59(1):143–148. https://doi.org/10.1637/10928-090314-regr
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Mannu L, Paba A, Daga E, Comunian R, Zanetti S, Duprè I et al (2003) Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int J Food Microbiol 88(2–3):291–304. https://doi.org/10.1016/s0168-1605(03)00191-0
Morpheus (2018) https://software.broadinstitute.org/morpheus. Accessed 11 Dec 2017
Moura TM d, Cassenego APV, Campos FS, Ribeiro AML, Franco AC, d’Azevedo PA et al (2013) Detection of vanC 1 gene transcription in vancomycin-susceptible Enterococcus faecalis. Mem Inst Oswaldo Cruz 108(4):453–456. https://doi.org/10.1590/s0074-0276108042013009
Ngbede EO, Raji MA, Kwanashie CN, Kwaga JKP (2017) Antimicrobial resistance and virulence profile of enterococci isolated from poultry and cattle sources in Nigeria. Trop Anim Health Prod 49(3):451–458. https://doi.org/10.1007/s11250-016-1212-5
Ogier J-C, Serror P (2008) Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126(3):291–301. https://doi.org/10.1016/j.ijfoodmicro.2007.08.017
Poeta P, Costa D, Rodrigues J, Torres C (2006) Antimicrobial resistance and the mechanisms implicated in faecal enterococci from healthy humans, poultry and pets in Portugal. Int J Antimicrob Agents 27(2):131–137. https://doi.org/10.1016/j.ijantimicag.2005.09.018
Poyart C, Quesnes G, Trieu-Cuot P (2000) Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification of enterococci. J Clin Microbiol 38(1):415–418. https://doi.org/10.1128/jcm.38.1.415-418.2000
Santestevan NA, de Angelis ZD, Prichula J, Pereira RI, Wachholz GR, Cardoso LA et al (2015) Antimicrobial resistance and virulence factor gene profiles of Enterococcus spp. isolates from wild Arctocephalus australis (south American fur seal) and Arctocephalus tropicalis (Subantarctic fur seal). World J Microbiol Biotechnol 31(12):1935–1946. https://doi.org/10.1007/s11274-015-1938-7
Sharifi Y, Hasani A, Ghotaslou R, Naghili B, Aghazadeh M, Milani M et al (2013) Virulence and antimicrobial resistance in enterococci isolated from urinary tract infections. Adv Pharm Bull 3(1):197–201. https://doi.org/10.5681/apb.2013.032
Stelling JM, Kulldorff M (2007) WHONET and BacLink: software tools for laboratory-based surveillance of infectious diseases and antimicrobial resistance. Advances in Disease Surveillance 2:121
Stępień-Pyśniak D, Hauschild T, Dec M, Marek A, Urban-Chmiel R, Kosikowska U (2021) Phenotypic and genotypic characterization of Enterococcus spp. from yolk sac infections in broiler chicks with a focus on virulence factors. Poult Sci 100(4):100985. https://doi.org/10.1016/j.psj.2021.01.008
Stȩpień-Pyśniak D, Marek A, Banach T, Adaszek Ł, Pyzik E, Wilczyński J et al (2016) Prevalence and antibiotic resistance of enterococcus strains isolated from poultry. Acta Vet Hung 64(2):148–163. https://doi.org/10.1556/004.2016.016
Strateva T, Atanasova D, Savov E, Petrova G, Mitov I (2016) Incidence of virulence determinants in clinical Enterococcus faecalis and Enterococcus faecium isolates collected in Bulgaria. Brazilian J Infect Dis 20(2):127–133. https://doi.org/10.1016/j.bjid.2015.11.011
Suchi SE, Shamsuzzaman S, Uddin BMM, Yusuf MA (2018) Detection of virulence factors and antimicrobial resistance in enterococci isolated from urinary tract infection. Bangladesh J Infect Dis 4(2):30–34. https://doi.org/10.3329/bjid.v4i2.37682
Sun M, Wang Y, Chen Z, Zhu X, Tian L, Sun Z (2014) The first report of the vanC1 gene in Enterococcus faecium isolated from a human clinical specimen. Mem Inst Oswaldo Cruz 109(6):712–715. https://doi.org/10.1590/0074-0276140019
Szakacs TA, Kalan L, McConnell MJ, Eshaghi A, Shahinas D, McGeer A et al (2014) Outbreak of vancomycin-susceptible Enterococcus faecium containing the wild-type vanA gene. J Clin Microbiol 52(5):1682–1686. https://doi.org/10.1128/jcm.03563-13
Thaker MN, Kalan L, Waglechner N, Eshaghi A, Patel SN, Poutanen S et al (2015) Vancomycin-variable enterococci can give rise to constitutive resistance during antibiotic therapy. Antimicrob Agents Chemother 59(3):1405–1410. https://doi.org/10.1128/aac.04490-14
Torres C, Alonso CA, Ruiz-Ripa L, León-Sampedro R, Del Campo R, Coque TM (2018) Antimicrobial resistance in Enterococcus spp. of animal origin. Microbiol Spectr 6(4). https://doi.org/10.1128/microbiolspec.arba-0032-2018
Tuohy MJ, Procop GW, Washington JA (2000) Antimicrobial susceptibility of Abiotrophia adiacens and Abiotrophia defectiva. Diagn Microbiol Infect Dis 38(3):189–191. https://doi.org/10.1016/s0732-8893(00)00194-2
Tyson GH, Nyirabahizi E, Crarey E, Kabera C, Lam C, Rice-Trujillo C et al (2018) Prevalence and antimicrobial resistance of enterococci isolated from retail meats in the United States, 2002 to 2014. Appl Environ Microbiol 84(1):e01902–e01917. https://doi.org/10.1128/aem.01902-17
Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R et al (2004) Development of a multiplex PCR for the detection of asaI, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among european hospital isolates of Enterococcus faecium. J Clin Microbiol 42(10):4473–4479. https://doi.org/10.1128/jcm.42.10.4473-4479.2004
Velkers FC, van de Graaf-Bloois L, Wagenaar JA, Westendorp ST, van Bergen MA, Dwars RM, Landman WJM (2011) Enterococcus hirae-associated endocarditis outbreaks in broiler flocks: clinical and pathological characteristics and molecular epidemiology. Vet Q 31(1):3–17. https://doi.org/10.1080/01652176.2011.570107
Vignaroli C, Zandri G, Aquilanti L, Pasquaroli S, Biavasco F (2011) Multidrug-resistant enterococci in animal meat and faeces and co-transfer of resistance from an Enterococcus durans to a human Enterococcus faecium. Curr Microbiol 62(5):1438–1447. https://doi.org/10.1007/s00284-011-9880-x
Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z et al (2015) A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother 70(8):2182–2190. https://doi.org/10.1093/jac/dkv116
World Health Organisation (2019) WHO list of critically important antimicrobials for human medicine (WHO CIA list). World Heal Organ 5th revision
Yoshimura H, Ishimaru M, Endoh YS, Kojima A (2000) Antimicrobial susceptibilities of enterococci isolated from faeces of broiler and layer chickens. Lett Appl Microbiol 31(6):427–432. https://doi.org/10.1046/j.1365-2672.2000.00842.x
Zoletti GO, Pereira EM, Schuenck RP, Teixeira LM, Siqueira JF, Dos Santos KRN (2011) Characterization of virulence factors and clonal diversity of Enterococcus faecalis isolates from treated dental root canals. Res Microbiol 162(2):151–158. https://doi.org/10.1016/j.resmic.2010.09.018
Acknowledgements
The authors would like to express their thanks to the participating investigators and laboratories and the staff at ARAC for their work and the Phoenix poultry farm for technical support.
Funding
The study was conducted with financial assistance of Ministry of Fisheries and Livestock, Bangladesh and US CDC (Grant number NU2GGH002077).
Author information
Authors and Affiliations
Contributions
Conceptualization: Mohammed A. Samad; Methodology, Formal Analysis and investigation: Md Shahjalal Sagor, Muhammad Sazzad Hossain, Mohammad Asheak Mahmud, Md Samun Sarker; Writing – original draft preparation: Mohammed A. Samad, Md Shahjalal Sagor; Writing – review and editing: Fahria A. Shownaw, Md Rezaul Karim, Zakaria Mia, Md Samun Sarker, Roderick M. Card, Agnes Agunos, Lindahl Johanna; Funding acquisition: Mohammed A. Samad; Resources: Mohammed A. Samad; Supervision: Mohammed A. Samad, Lindahl Johanna.
Corresponding author
Ethics declarations
Ethical approval
This study was conducted upon approval by the ethical regulation constructed by Bangladesh Livestock Research Institute (ARAC: 01/10/2016:01).
Consent to participate
Verbal consent from the authority of each farm was taken before collecting the samples from the farm.
Consent for publication
We give our consent for the publication of the submitted manuscript.
Competing interests
None.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Samad, M.A., Sagor, M.S., Hossain, M.S. et al. High prevalence of vancomycin non-susceptible and multi-drug resistant enterococci in farmed animals and fresh retail meats in Bangladesh. Vet Res Commun 46, 811–822 (2022). https://doi.org/10.1007/s11259-022-09906-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11259-022-09906-7
Keywords
- Enterococcus spp.
- Food safety
- Livestock
- Multi-drug resistance
- Virulence
- Antimicrobial resistance