Veterinary Research Communications

, Volume 42, Issue 2, pp 111–120 | Cite as

Genomic characterization of the first oral avian papillomavirus in a colony of breeding canaries (Serinus canaria)

  • Daniel A. Truchado
  • Michaël A. J. Moens
  • Sergio Callejas
  • Javier Pérez-Tris
  • Laura Benítez
Original Article


Papillomaviruses are non-enveloped, DNA viruses that infect skin and mucosa of a wide variety of vertebrates, causing neoplasias or simply persisting asymptomatically. Avian papillomaviruses, with six fully sequenced genomes, are the second most studied group after mammalian papillomaviruses. In this study, we describe the first oral avian papillomavirus, detected in the tongue of a dead Yorkshire canary (Serinus canaria) and in oral swabs of the same bird and other two live canaries from an aviary in Madrid, Spain. Its genome is 8,071 bp and presents the canonical papillomavirus architecture with six early (E6, E7, E1, E9, E2, E4) and two late open reading frames (L1 and L2) and a long control region between L1 and E6. This new avian papillomavirus L1 gene shares a 64% pairwise identity with FcPV1 L1, so it has been classified as a new species (ScPV1) within the Ethapapillomavirus genus. Although the canary died after showing breathing problems, there is no evidence that the papillomavirus caused those symptoms so it could be part of the oral microbiota of the birds. Hence, future investigations are needed to evaluate the clinical relevance of the virus.


Avian papillomavirus ScPV1 Canary Oral Aviary 



The authors would like to thank Carlos Guisado for providing Yorkshire canaries and permit the access to the aviary and Alejandro Alonso for providing oral swabs; Rosa P. Gomáriz and Javier Leceta (Department of Cell Biology, Faculty of Biology, UCM) for the technical assistance; and Jorge Ruiz for his collaboration during the first stages of this work. DAT is beneficiary of a predoctoral fellowship funded by the UCM (CT27/16-CT28/16). We were funded by the Ministry of Economy and Competitiveness (project CGL2013-41642-P/BOS) from Spain.

Contributions to the paper

Conceived of or designed study: LB; performed research: DAT, SC; analyzed data: DAT, MAJM, SC, JP, LB; wrote the paper: DAT, MAJM, SC, JP, LB.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11259_2018_9713_MOESM1_ESM.docx (599 kb)
Supplementary material 1 (DOCX 598 KB)


  1. Antonsson A, Hansson BG (2002) Healthy skin of many animal species harbors papillomaviruses which are closely related to their human counterparts. J Virol 76:12537–12542. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antonsson A, Erfurt C, Hazard K et al (2003) Prevalence and type spectrum of human papillomaviruses in healthy skin samples collected in three continents. J Gen Virol 84:1881–1886. CrossRefPubMedGoogle Scholar
  3. Berg M, Stenlund A (1997) Functional interactions between papillomavirus E1 and E2 proteins. J Virol 71:3853–3863PubMedPubMedCentralGoogle Scholar
  4. Bernard HU (2013) Regulatory elements in the viral genome. Virology 445:197–204. CrossRefPubMedGoogle Scholar
  5. Bernard HU, Burk RD, Chen Z et al (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blackmore D, Keymer I (1969) Cutaneous diseases of wild birds in Britain. Br Birds 62:316–331Google Scholar
  7. Bottalico D, Chen Z, Dunne A et al (2011) The oral cavity contains abundant known and novel human papillomaviruses from the Betapapillomavirus and Gammapapillomavirus genera. J Infect Dis 204:787–792. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burge C, Campbell AM, Karlin S (1992) Over- and under-representation of short oligonucleotides in DNA sequences. Proc Natl Acad Sci 89:1358–1362CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carver T, Thomson N, Bleasby A et al (2009) DNA plotter: circular and linear interactive genome visualization. Bioinformatics 25:119–120. CrossRefPubMedGoogle Scholar
  10. Christensen ND, Cladel NM, Reed CA, Han R (2000) Rabbit oral papillomavirus complete genome sequence and immunity following genital infection. Virology 269:451–461. CrossRefPubMedGoogle Scholar
  11. Dom P, Ducatelle R, Charlier G, de Groot P (1993) Papillomavirus-like infections in canaries (Serinus canarius). Avian Pathol 22:797–803. CrossRefPubMedGoogle Scholar
  12. Fakhry C, D’souza G, Sugar E et al (2006) Relationship between prevalent oral and cervical human papillomavirus infections in human immunodeficiency virus-positive and -negative women. J Clin Microbiol 44:4479–4485. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fawaz M, Vijayakumar P, Mishra A et al (2016) Duck gut viral metagenome analysis captures snapshot of viral diversity. Gut Pathog 8. Google Scholar
  14. Fernandes JV, Fernandes TAADM., de Azevedo JCV et al (2015) Link between chronic inflammation and human papillomavirus-induced carcinogenesis (Review). Oncol Lett 9:1015–1026CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gaynor AM, Fish S, Duerr RS et al (2015) Identification of a novel papillomavirus in a northern fulmar (Fulmarus glacialis) with viral production in cartilage. Vet Pathol 52:1–9. CrossRefGoogle Scholar
  16. Herbst LH, Lenz J, Van Doorslaer K et al (2009) Genomic characterization of two novel reptilian papillomaviruses, Chelonia mydas papillomavirus 1 and Caretta caretta papillomavirus 1. Virology 383:131–135. CrossRefPubMedGoogle Scholar
  17. Iwasaki T, Maeda H, Kameyama Y et al (1997) Presence of a novel hamster oral papillomavirus in dysplastic lesions of hamster lingual mucosa induced by application of dimethylbenzanthracene and excisional wounding: molecular cloning and complete nucleotide sequence. J Gen Virol 78:1087–1093CrossRefPubMedGoogle Scholar
  18. Katoh H, Ogawa H, Ohya K, Fukushi H (2010) A review of DNA viral infections in psittacine birds. J Vet Med Sci 72:1099–1106. CrossRefPubMedGoogle Scholar
  19. Kreimer AR, Alberg AJ, Daniel R et al (2004) Oral human papillomavirus infection in adults is associated with sexual behavior and HIV serostatus. J Infect Dis 189:686–698. CrossRefPubMedGoogle Scholar
  20. Kreimer AR, Clifford GM, Boyle P et al (2005) Human Papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review human papillomavirus types in head and neck squamous cell carcinomas worldwide : a systematic review. Cancer Epidemiol Prev Biomarkers 14:467–475CrossRefGoogle Scholar
  21. Krieg AM (2003) CpG DNA: trigger of sepsis, mediator of protection, or both? Scand J Infect Dis 35:653–659. CrossRefPubMedGoogle Scholar
  22. Lange CE, Zollinger S, Tobler K et al (2011) Clinically healthy skin of dogs is a potential reservoir for canine papillomaviruses. J Clin Microbiol 49:707–709. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lange CE, Ackermann M, Favrot C, Tobler K (2012) Entire genomic sequence of novel canine papillomavirus type 13. J Virol 86:10226–10227CrossRefPubMedPubMedCentralGoogle Scholar
  24. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Legler M, Kothe R, Wohlsein P et al (2014) First detection of psittacid herpesvirus 2 in Congo African grey parrots (Psittacus erithacus erithacus) associated with pharyngeal papillomas and cloacal inflammation in Germany. Berl Munch Tierarztl Wochenschr 127:222–226. PubMedGoogle Scholar
  26. Lina PHC, van Noord MJ, de Groot FG (1973) Detection of virus in squamous papillomas of the wild bird species Fringilla coelebs. J Natl Cancer Inst 50:567–571CrossRefPubMedGoogle Scholar
  27. Literak I, Smid B, Dusbabek F et al (2005) Co-infection with papillomavirus and Knemidokoptes jamaicensis (Acari: Knemidokoptidae) in a chaffinch (Fringilla coelebs) and a case of beak papillomatosis in another chaffinch. Vet Med (Praha) 50:276–280CrossRefGoogle Scholar
  28. Literák I, Šmíd B, Valíček L (2003) Papillomatosis in chaffinches (Fringilla coelebs) in the Czech Republic and Germany. Vet Med (Praha) 48:169–173CrossRefGoogle Scholar
  29. Ma Y, Madupu R, Karaoz U et al (2014) Human papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. J Virol 88:4786–4797. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10. Google Scholar
  31. Moreno-Lopez J, Ahola H, Stenlund A et al (1984) Genome of an avian papillomavirus. J Virol 51:872–875PubMedPubMedCentralGoogle Scholar
  32. Munday JS, Dunowska M, Laurie RE, Hills S (2016) Genomic characterisation of canine papillomavirus type 17, a possible rare cause of canine oral squamous cell carcinoma. Vet Microbiol 182:135–140. CrossRefPubMedGoogle Scholar
  33. Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40:e155. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Osterhaus ADME., D.J.Ellens MCHorzinek (1977) Identification and characterization of a papillomavirus from birds (Fringillidae). Intervirology 8:351–359CrossRefPubMedGoogle Scholar
  35. Pérez-Tris JA, Williams ARAJ., Abel-Fernández BE et al (2011) A multiplex PCR for detection of poxvirus and papillomavirus in cutaneous warts from live birds and museum skins. Avian Dis 55:545–553CrossRefPubMedGoogle Scholar
  36. Porcellato I, Brachelente C, Guelfi G et al (2014) A retrospective investigation on canine papillomavirus 1 (CPV1) in oral oncogenesis reveals dogs are not a suitable animal model for high-risk HPV-induced oral cancer. PLoS One 9:1–7. CrossRefGoogle Scholar
  37. Rector A, Van Ranst M (2013) Animal papillomaviruses. Virology 445:213–223. CrossRefPubMedGoogle Scholar
  38. Rector A, Lemey P, Tachezy R et al (2007) Ancient papillomavirus-host co-speciation in Felidae. Genome Biol 8:R57. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ruttkay-Nedecky B, Jimenez Jimenez AM, Nejdl L et al (2013) Relevance of infection with human papillomavirus: the role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins (Review). Int J Oncol 43:1754–1762. CrossRefPubMedGoogle Scholar
  40. Savini F, Dal Molin E, Gallina L et al (2016) Papillomavirus in healthy skin and mucosa of wild ruminants in the Italian Alps. J Wildl Dis. PubMedGoogle Scholar
  41. Schmidt RE, Reavill DR, Phalen DN (2015) Pathology of Pet and Aviary Birds, 2nd edn, Wiley-BlacGoogle Scholar
  42. Schulz E, Gottschling M, Wibbelt G et al (2009) Isolation and genomic characterization of the first Norway rat (Rattus norvegicus) papillomavirus and its phylogenetic position within pipapillomavirus, primarily infecting rodents. J Gen Virol 90:2609–2614. CrossRefPubMedGoogle Scholar
  43. Shackelton LA, Parrish CR, Holmes EC (2006) Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J Mol Evol 62:551–563. CrossRefPubMedGoogle Scholar
  44. Shivaprasad HL, Kim T, Tripathy D et al (2009) Unusual pathology of canary poxvirus infection associated with high mortality in young and adult breeder canaries (Serinus canaria). Avian Pathol 38:311–316. CrossRefPubMedGoogle Scholar
  45. Silvestre RVD, de Souza AJS, Júnior ECS et al (2016) First new world primate papillomavirus identification in the atlantic forest, Brazil: Alouatta guariba papillomavirus 1. Genome Announc 4:e00725-16. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sironi G, Gallazzi D (1992) Papillomavirus Infection in Greenfinches (Carduelis chloris). J Vet Med Ser B 39:454–458. CrossRefGoogle Scholar
  47. Speer B, Powers LV (2016) Anatomy and disorders of the beak and oral cavity of birds. Vet Clin North Am - Exot Anim Pract 19:707–736. CrossRefPubMedGoogle Scholar
  48. Stevens H, Rector A, Bertelsen MF et al (2008) Novel papillomavirus isolated from the oral mucosa of a polar bear does not cluster with other papillomaviruses of carnivores. Vet Microbiol. PubMedGoogle Scholar
  49. Tachezy R, Rector A, Havelkova M et al (2002) Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV) genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus. BMC Microbiol 2:19. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. PubMedPubMedCentralGoogle Scholar
  51. Terai M, DeSalle R, Burk RD (2002) Lack of canonical E6 and E7 open reading frames in bird Papillomaviruses: Fringilla coelebs Papillomavirus and Psittacus erithacus timneh papillomavirus. J Virol 76:10020–10023. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Termine N, Panzarella V, Falaschini S et al (2008) HPV in oral squamous cell carcinoma vs head and neck squamous cell carcinoma biopsies: a meta-analysis (1988–2007). Ann Oncol 19:1681–1690. CrossRefPubMedGoogle Scholar
  53. Upadhyay M, Vivekanandan P (2015) Depletion of CpG Dinucleotides in papillomaviruses and polyomaviruses: a role for divergent evolutionary pressures. PLoS One 10:1–16. Google Scholar
  54. Van Doorslaer K, Ould M, Ould Sidi A, Zanier K et al (2009) Identification of unusual E6 and E7 proteins within Avian papillomaviruses: cellular localization, biophysical characterization, and phylogenetic analysis. J Virol 83:8759–8770. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Van Doorslaer K, Ruoppolo V, Schmidt A et al (2017) Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins. Virus Evol 3:1–12. Google Scholar
  56. Varsani A, Kraberger S, Jennings S et al (2014) A novel papillomavirus in Adélie penguin (Pygoscelis adeliae) faeces sampled at the Cape Crozier colony, Antarctica. J Gen Virol 95:1352–1365. CrossRefPubMedGoogle Scholar
  57. Wilson VG, West M, Woytek K, Rangasamy D (2002) Papillomavirus E1 proteins: Form, function, and features. Virus Genes 24:275–290. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Biodiversidad, Ecología y Evolución, Facultad de BiologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de Fisiología, Genética y Microbiología, Facultad de BiologíaMadridSpain
  3. 3.Fundación de Conservación JocotocoQuitoEcuador
  4. 4.Unidad de GenómicaCentro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain

Personalised recommendations