Skip to main content
Log in

The effect of Nesfatin-1 on food intake in neonatal chicks: role of CRF1 /CRF2 and H1/ H3 receptors

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

The present study was designed to determine the effect of central injection of Nesfatin-1 and corticotropin and histaminergic systems on food intake in neonatal meat-type chicks. In this study, 7 experiments were designed, each with 4 treatment groups. In experiment 1, four groups of chicks received the ICV injection of (A) phosphate-buffered saline (PBS), (B) Nesfatin-1 (10 ng), (C) Nesfatin-1 (20 ng) and (D) Nesfatin-1 (40 ng). In experiment 2, (A) PBS, (B) Astressin-B (CRF1/CRF2 receptors antagonist; 30 µg), (C) Nesfatin-1 (40 ng) and (D) Nesfatin-1 + Astressin-B were injected. In experiments 3–6, chicken received ICV injection of the Astressin2-B (CRF2 receptor antagonist; 30 µg), α-FMH (alpha fluoromethyl histidine; as inhibitor of histidine decarboxylase, 250 nmol), Chlorpheniramine (histamine H1 receptors antagonist, 300 nmol), Famotidine (histamine H2 receptors antagonist, 82 nmol) and Thioperamide (histamine H3 receptors antagonist, 300 nmol) instead of the Astressin-B. Then the cumulative food intake measured until 120 min post-injection. According to the results, ICV injection of Nesfatin-1 dose dependently decreased food intake in neonatal chicks (P < 0.05). Co-injection of the Nesfatin-1 and Astressin-B (CRF1/CRF2) inhibited Nesfatin-1 induced hypophagia (P < 0.05). ICV inejction of the Nesfatin-1 + Astressin-B significantly inhibited the effect of Nesfatin-1 on food intake (P < 0.05). In addition, α-FMH and chlorpheniramine attenuated Nesfatin-1-induced hypophagia in chicks (P < 0.05); while thioperamide significantly amplified the effect of Nesfatin-1 on food intake in chicks (P < 0.05). These results suggested Nesfatin-1 has an anorectic effect in 3-hour food deprived neonatal meat-type chicks and this effect was mediated by corticotropin CRF1/CRF2 as well as histamine H1 and H3 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alizadeh A, Zendehdel M, Babapour V, Charkhkar S, Hassanpour S (2015) Role of cannabinoidergic system on food intake in neonatal layer-type chicken. Vet Res Commun 39:151–157

    Article  PubMed  Google Scholar 

  • Atsuchi K, Asakawa A, Ushikai M, Ataka K, Tsai M, Koyama K, Sato Y, Kato I, Fujimiya M, Inui A (2010) Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroreport 21:1008–1011

    CAS  PubMed  Google Scholar 

  • Chen P, Hover CV, Lindberg D, Li C (2013) Central urocortin 3 and type2 corticotropin-releasing factor receptor in the regulation of energy homeostasis: critical involvement of the ventromedial hypothalamus. Front Endocrinol (Lausanne) 3:180

    Google Scholar 

  • Chiba S, Itateyama E, Sakata T, Yoshimatsu H (2009) Acute central administration of immepip, a histamine H3 receptor agonist, suppresses hypothalamic histamine release and elicits feeding behavior in rats. Brain Res Bull 79:37–40

    Article  CAS  PubMed  Google Scholar 

  • D’Addario C, Micioni Di Bonaventura MV, Puccia M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M (2014) Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 47:203–224

    Article  PubMed  Google Scholar 

  • Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A (1979) Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiol Behav 22:693–695

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Wang Q, Guo F, Han X, Pang M, Sun X, Gong Y, Xu L (2017) Nesfatin-1 influences the excitability of gastric distension-responsive neurons in the ventromedial hypothalamic nucleus of rats. Physiol Res 66(2):335–344

    PubMed  Google Scholar 

  • Finelli C, Rossano R, Padula MC, La Sala N, Sommella L, Martelli G (2014) Nesfatin – 1: role as possible new anti obesity treatment. J Obes Weight Loss Ther 4(3):1–4

    Google Scholar 

  • Fort P, Salvert D, Hanriot L, Jego S, Shimizu H, Hashimoto K, Mori M, Luppi PH (2008) The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience 155:174–181

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Matsumoto M, Saito N, Sugahara K, Hasegawa S (1997) The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur J Pharmacol 339:211–214

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Ando R, Bungo T, Ao R, ShimoJO M, Masuda Y (1999) Intracerebroventricular injection of orexins does not stimulate food intake in neonatal chicks. Br Poult Sci 40:698–700

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Yamane H, Tomonaga S, Tsuneyoshi Y, Denbow DM (2007) Neuropeptidergic regulation of food intake in the neonatal chick: a review. J Poult Sci 44:349–356

    Article  CAS  Google Scholar 

  • Gotoh K, Masaki T, Chiba S, Ando H, Shimasaki T, Mitsutomi K, Fujiwara K, Katsuragi I, Kakuma T, Sakata T, Yoshimatsu H (2013) Nesfatin-1, corticotropinreleasing hormone, thyrotropin-releasing hormone, and neuronal histamine interact in the hypothalamus to regulate feeding behavior. J Neurochem 124:90–99

    Article  CAS  PubMed  Google Scholar 

  • Guo FF, Xu L, Gao SL, Sun XR, Li ZL, Gong YL (2015) The effects of nesfatin-1 in the paraventricular nucleus on gastric motility and its potential regulation by the lateral hypothalamic area in rats. J Neurochem 132(3):266–275

    Article  CAS  PubMed  Google Scholar 

  • Hancock AA, Brune ME (2005) Assessment of pharmacology and potential anti-obesity properties of H3 receptor antagonists/inverse agonists. Expert Opin Investig Drugs 14:223–241

    Article  CAS  PubMed  Google Scholar 

  • Hassanpour S, Zendehdel M, Babapour V, Charkhkar S (2015) Endocannabinoid and nitric oxide interaction mediates food intake in neonatal chicken. Br Poult Sci 56(4):443–451

    Article  CAS  PubMed  Google Scholar 

  • Itoh E, Fujimiya M, Inui A (1998) Thioperamide, a histamine H3 receptor antagonist, suppresses NPY-but not dynorphin A-induced feeding in rats. Regul Pept 75–76:373–376

    Article  PubMed  Google Scholar 

  • Iwasaki Y, Nakabayashi H, Kakei M, Shimizu H, Mori M, Yada T (2009) Nesfatin-1 evokes Ca2 + signaling in isolated vagal afferent neurons via Ca2 + influx through N-type channels. Biochem Biophys Res Commun 390:958–962

    Article  CAS  PubMed  Google Scholar 

  • Kohno D, Nakata M, Maejima Y, Shimizu H, Sedbazar U, Yoshida N et al (2008) Nesfatin-1 neurons in paraventricular and supra optic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology 149:1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Lecklin A, Etu-Seppal P, Stark H, Tuomisto L (1998) Effects of intracerebroventricularly infused histamine and selective H1, H2 and H3 agonists on food and water intake and urine flow in Wistar rats. Brain Res 793:279–288

    Article  CAS  PubMed  Google Scholar 

  • Meade S, Denbow M (2001) Feeding, drinking, and temperature response of chickens to intracerebroventricular histamine. Physiol Behav 73:65–73

    Article  CAS  PubMed  Google Scholar 

  • Morimoto T, Yamatodani Y, Yamatodani A (2001) Brain histamine and feeding behavior. Behav Brain Res 124:145–150

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi S, Gonzalez R, Ceddia R, Unniappan S (2015) Long-term infusion of nesfatin-1 causes a sustained regulation of whole-body energy homeostasis of male Fischer 344 rats. Front Cell Dev Biol 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh IS, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443:709–712

    Article  Google Scholar 

  • Olanrewaju HA, Thaxton JP, Dozier WA, Purswell J, Roush WB, Branton SL (2006) A review of lighting programs for broiler production. Int J Poult Sci 5(4):301–308

    Article  Google Scholar 

  • Passani MB, Blandina P, Torrealba F (2011) The histamine H3 receptor and eating behavior. J Pharmacol Exper Ther 336(1):24–29

    Article  CAS  Google Scholar 

  • Prinz P, Teuffel P, Lembke V, Kobelt P, Goebel-Stengel M, Hofmann T, Rose M, Klapp BF, Stengel A (2015) Nesfatin-130–59 injected intracerebroventricularly differentially affects food intake microstructurein rats under normal weight and diet-induced obese conditions. Front Neurosci 9:422

    PubMed  PubMed Central  Google Scholar 

  • Richard D, Lin Q, Timofeeva E (2002) The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur J Pharmacol 440:189–197

    Article  CAS  PubMed  Google Scholar 

  • Saito ES, Kaiya H, Tachibana T, Tomonaga S, Denbow DM, Kangawa K, Furuse M (2005) Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Pept 125:201–208

    Article  CAS  PubMed  Google Scholar 

  • Sakata T, Ookuma K, Fujimoto K, Fukagawa K, Yoshimatsu H (1991) Histaminergic control of energy balance in rats. Brain Res Bull 27:371–375

    Article  CAS  PubMed  Google Scholar 

  • Schneider EH, Neumann D, Seifert R (2014) Modulation of behavior by the histaminergic system: lessons from HDC-, H3R- and H4R-deficient mice. Neurosci Biobehav Rev 47:101–121

    Article  PubMed  Google Scholar 

  • Shousha S, Kirat D, Naso T (2015) Effect of central and peripheral Nesfatin-1 on food intake in Japanese quail. AASCIT J Biol 1(1):1–9

    Google Scholar 

  • Stengel A, Tache Y (2013) Role of brain NUCB2/nesfatin-1 in the regulation of food intake. Curr Pharm Des 19:6955–6959

    Article  CAS  PubMed  Google Scholar 

  • Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Mönnikes H, Lambrecht NWG, Tache Y (2009) Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor2 receptor. Endocrinology 150:4911–4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stengel A, Goebel M, Wang L, Tache Y (2010) Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: role as regulators of food intake and body weight. Peptides 31:357–369

    Article  CAS  PubMed  Google Scholar 

  • Taati M, Babapour V, Kheradmand A, Tarrahi MJ (2009) The role of central endogenous histamine and H1, H2 and H3 receptors on food intake in broiler chickens. Iran J Vet Res 10(1):54–60

    Google Scholar 

  • Taati M, Nayebzadeh H, Khosravinia H, Cheraghi J (2010) The role of the histaminergic system on the inhibitory effect of ghrelin on feed intake in broiler chickens. Iran J Vet Res 11(1):38–45

    Google Scholar 

  • Tanida M, Gotoh H, Yamamoto N, Wang M, Kuda Y, Kurata Y, Mori M, Shibamoto T (2015) Hypothalamic Nesfatin-1 stimulates sympathetic nerve activity via hypothalamic ERK signaling. Diabetes 64:3725–3736

    Article  CAS  PubMed  Google Scholar 

  • Van Tienhoven A, Juhasz LP (1962) The chicken telencephalon, diencephalon and mesencephalon in sterotaxic coordinates. J Comp Neurol 118:185–197

    Article  Google Scholar 

  • Yosten GL, Samson WK (2014) Neural circuitry underlying the central hypertensive action of nesfatin-1: melanocortins, corticotropin-releasing hormone, and oxytocin. Am J Phys Regul Integr Comp Phys 306:R722–R727

    CAS  Google Scholar 

  • Zendehdel M, Hamidi F, Hassanpour S (2015) The effect of histaminergic system on nociceptin/orphanin FQ induced food intake in chicken. Int J Pept Res Ther 21:179–186

    Article  CAS  Google Scholar 

  • Zendehdel M, Baghbanzadeh A, Aghelkohan P, Hassanpour S (2016) Central histaminergic system interplay with suppressive effects of immune challenge on food intake in chicken. Br Poult Sci 57(2):271–279

    Article  CAS  PubMed  Google Scholar 

  • Zendehdel M, Tirgari F, Shohre B, Deldar H, Hassanpour S (2017) Involvement of GABA and cannabinoid receptors in central food intake regulation in neonatal layer chicks: role of CB1 and GABAA receptors. Br J Poult Sci 19(2):51–60

    Google Scholar 

Download references

Acknowledgements

The authors thank the central laboratory (Dr. Rastegar Lab.) of the Faculty of Veterinary Medicine, University of Tehran for cooperation. This research is conducted as a part of the PhD thesis of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Zendehdel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

This manuscript does not contain any studies with human subjects performed by any of the authors.

Human and animal rights

All experiments were executed according to the Guide for the Care and Use of Laboratory Animals and were approved by the institutional animal ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarzadeh, H., Zendehdel, M., Babapour, V. et al. The effect of Nesfatin-1 on food intake in neonatal chicks: role of CRF1 /CRF2 and H1/ H3 receptors. Vet Res Commun 42, 39–47 (2018). https://doi.org/10.1007/s11259-017-9706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-017-9706-9

Keywords

Navigation