Skip to main content
Log in

Cell proliferation and expression of connexins differ in melanotic and amelanotic canine oral melanomas

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Melanoma is a malignant neoplasm occurring in several animal species, and is the most frequently found tumor in the oral cavity in dogs. Melanomas are classified into two types: melanotic and amelanotic. Prior research suggests that human amelanotic melanomas are more aggressive than their melanotic counterparts. This study evaluates the behavior of canine melanotic and amelanotic oral cavity melanomas and quantifies cell proliferation and the expression of connexins. Twenty-five melanomas (16 melanotic and 9 amelanotic) were collected from dogs during clinical procedures at the Veterinary Hospital of the School of Veterinary Medicine and Animal Science of the University of São Paulo, Brazil. After diagnosis, dogs were followed until death or euthanasia. Histopathology confirmed the gross melanotic or amelanotic characteristics and tumors were classified according to the WHO. HMB45 or Melan A immunostainings were performed to confirm the diagnosis of amelanotic melanomas. Cell proliferation was quantified both by counting mitotic figures and PCNA positive nuclei. Expressions of connexins 26 and 43 were evaluated by immunohistochemistry, qRT-PCR and Western blot. Dogs bearing amelanotic melanomas presented a shorter lifespan in comparison to those with melanotic melanomas. Cell proliferation was significantly higher in amelanotic melanomas. Expressions of Connexins 26 and 43 were significantly reduced in amelanotic melanomas. The results presented here suggest that oral cavity melanotic and amelanotic melanomas differ regarding their behavior, cell proliferation and connexin expression in dogs, indicating a higher aggressiveness of amelanotic variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Beck ER, Withrow SJ, McChesney AE, Richardson RC, Henderson RA, Norris AM, Caywood DD, Klausner JS, Harvey HJ, Holmberg DL (1986) Canine tongue tumors: a retrospective review of 57 cases. J Am Anim Hosp Assoc 22:525–532

    Google Scholar 

  • Bergman PJ (2007) Canine oral melanoma. Clin Tech Small Anim Pract 22(2):55–56

    Article  PubMed  Google Scholar 

  • Chénier S, Dore M (1999) Oral malignant melanoma with osteoid formation in a dog. Vet Pathol 36:74–76

    Article  PubMed  Google Scholar 

  • Choi C, Kusewitt DF (2003) Comparison of tyrosinase related protein-2, S-100 and melan a immunoreactivity in canine amelanocitic melanomas. Vet Pathol 40:713–718

    Article  CAS  PubMed  Google Scholar 

  • Dagli ML, Hernandez-Blazquez FJ (2007) Roles of gap junctions and connexins in non-neoplastic pathological processes in which cell proliferation is involved. J Membr Biol 218:79–91

    Article  PubMed  Google Scholar 

  • Esplin DG (2008) Survival of dogs following surgical excision of histologically well-differentiated melanocytic neoplasms of the mucous membranes of the lips and oral cavity. Vet Pathol 45:889–896

    Article  CAS  PubMed  Google Scholar 

  • Ezumi K, Yamamoto H, Murata K, Higashiyama M, Damdinsuren B, Nakamura Y, Kyo N, Okami J, Ngan CY, Takemasa I, Ikeda M, Sekimoto M, Matsuura N, Nojima H, Monden M (2008) Aberrant expression of connexin 26 is associated with lung metastasis of colorectal. Cancer Clin Cancer Res 14(3):677–684

    Article  CAS  Google Scholar 

  • Freeman KP, Hahn KA, Harris FD et al (2003) Treatment of dogs with oral melanoma by hypofractionated radiation therapy and platinum-based chemotherapy (1987–1997). J Vet Intern Med 17(1):96–101

    PubMed  Google Scholar 

  • Godde NJ, Galea RC, Elsum IA, Humbert PO (2010) Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 15:149–168

    Article  PubMed  Google Scholar 

  • Goldschmidt MH, Dunstan RW, Stannard AA, Von Toscharner C, Wlader EJ, Yager JA (1998) Histological classification of epithelial and melanocytic tumors of skin of domestic animals. In: World Health Organization International Histological Classification of Tumors of Domestic Animals, 2nd series, v.3, Armed Forces Institute of Pathology, Washington DC

  • Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10(2):153–163

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Smalley KS, Herlyn M (2004) The role of altered cell-cell communication in melanoma progression. J Mol Histol 35:309–318

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Wladykowski E, Kief S, Moll I, Brandner JM (2006) Differential induction of connexins 26 and 30 in skin tumors and their adjacent epidermis. J Histochem Cytochem 54:171–182

    Article  CAS  PubMed  Google Scholar 

  • Haass NK, Ripperger D, Wladykowski E, Dawson P, Gimotty PA, Blome C, Fischer F, Schmage P, Moll I, Brandner JM (2010) Melanoma progression exhibits a significant impact on connexin expression patterns in the epidermal tumor microenvironment. Histochem Cell Biol 133:113–124

    Article  CAS  PubMed  Google Scholar 

  • Halaban R (2002) Pigmentation in melanomas changes manifesting underlying oncogenic and metabolic activities. Oncol Res 13(1):3–8

    CAS  PubMed  Google Scholar 

  • Hsu SM, Raine L, Fanger RH (1981) Use of Avidin-Biotin-Peroxidase Complex (ABC) in immunoperoxidase techniques: a comparision between ABC and Unlabeled antibody (PAP) procedure. J Histoquem Cytochem 29(4):577–580

    Article  CAS  Google Scholar 

  • Hsu SM, Andl T, Li G, Meinkoth JL, Herlyn M (2000) Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci 113:1535–1542

    CAS  PubMed  Google Scholar 

  • Ito A, Katoh F, Kataoka TR, Okada M, Tsubata N, Asada H, Yoshikawa K, Maeda S, Kitamura Y, Yamasaki H, Nojima H (2000) A role for heterologous gap junctions between melanomas and endothelial cells in metastasis. J Clin Invest 105:189–197

    Article  Google Scholar 

  • Ito A, Morita N, Miura D, Koma Y, Kataoka TR, Yamasaki H, Kitamura Y, Kita Y, Nojima H (2004) A derivative of oleamide potently inhibits the spontaneous metastasis of mouse melanoma BL6 cells. Carcinogenesis 25(10):2015–2022

    Article  CAS  PubMed  Google Scholar 

  • Li G, Satyamoorthy K, Herlyn M (2002) Dynamics of cell interactions and communications during melanoma development. Crit Rev Oral Bio Med 13(1):62–70

    Article  CAS  Google Scholar 

  • Loewenstein WR, Kanno Y (1966) Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature 209:1248–1249

    Article  CAS  PubMed  Google Scholar 

  • Martins AM, Guerra JL, Oloris SCS, Avanzo JL, Lima CE, Dagli MLZ (2010) Expression of connexins 43, 26 and 32 in normal, hyperplastic and neoplasic perianal dog glands. Braz J Vet Pathol 3(1):46–51

    Google Scholar 

  • Millanta F, Fratini F, Corazza M, Castagnaro M, Zappulli V, Poli A (2002) Proliferation activity in oral and cutaneous canine melanocytic tumours correlation with histological parameters, location and clinical behaviour. Res Vet Sci 73:45–51

    Article  CAS  PubMed  Google Scholar 

  • Naus CC, Laird DW (2010) Implications and challenges of connexin connections to cancer. Nat Rev Cancer 10:435–441

    Article  CAS  PubMed  Google Scholar 

  • Points G, Fiorini C, Gilleron J, Carette D, Segretain D (2007) Connexins as precocious markers and molecular targets for chemical and pharmacological agents in carcinogenesis. Curr Med Chem 14(21):2288–2303

    Article  Google Scholar 

  • Ramos-Vara JA, Beissenherz ME, Miller MA, Johnson GC, Pace LW, Fard A, Kotter SJ (2000) Retrospective study of 338 canine oral melanomas with clinical, hitologic, and immunohistochemical review of 129 cases. Vet Pathol 37:597–608

    Article  CAS  PubMed  Google Scholar 

  • Roels S, Tilmant K, Ducatelle R (1999) PCNA and Ki67 proliferation markers as criteria for prediction of clinical behaviour of melanocytic tumours in cats and dogs. J Comp Path 121:13–24

    Article  CAS  PubMed  Google Scholar 

  • Saito-Katsuragi M, Asada H, Niizeki H, Katoh F, Masuzawa M, Tsutsumi M, Kuniyasu H, Ito A, Nojima H, Miyagawa S (2007) Role for connexin 26 in metastasis of human malignant melanoma. Am Cancer Soc. doi:10.1002/cncr.22894

    Google Scholar 

  • Sanches DS, Pires CG, Fukumasu H, Cogliati B, Matsuzaki P, Chaible LM, Torres LN, Ferrigno CR, Dagli MLZ (2009) Expression of connexins in normal and neoplastic canine bone tissue. Vet Pathol 46(5):846–859

    Article  CAS  PubMed  Google Scholar 

  • Sánchez J, Ramirez GA, Buendia AJ, Vilafranca M, Martinez CM, Altimira J, Navarro JÁ (2007) Immunohistochemical characterization and evaluation of prognostic factors in canine oral melanomas with osteocartilaginous differentiation. Vet Pathol 44:676–682

    Article  PubMed  Google Scholar 

  • Scott DW, Miller WH, Griffin CE (2001) Muller and Kirk small animal dermatology. Saunders Philadelphia, EUA

    Google Scholar 

  • Shen Y, Khsial PR, Li X (2007) SRC utilizes Cas to block gap junctional communication mediated by connexin 43. J Biol Chem 282:914–921

    Google Scholar 

  • Smedley RC, Spangler WL, Esplin DG, Kitchell BE, Bergman PJ, Ho HY, Bergin IL, Kiupel M (2011a) Prognostic markers for canine melanocytic neoplasms: a comparative review of the literature and goals for future investigation. Vet Pathol 48(1):54–72

    Article  CAS  PubMed  Google Scholar 

  • Smedley RC, Lamoureux J, Sledge DG, Kiupel M (2011b) Immunohistochemical diagnosis of canine oral amelanotic melanocytic neoplasms. Vet Pathol 48(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Smith SH, Goldschmidt MH, McManus PM (2002) A comparative review of melanocytic neoplasms. Vet Pathol 39:651–678

    Article  CAS  PubMed  Google Scholar 

  • Spangler WL, Kass PH (2006) The histologic and epidemiologic bases for prognostic considerations in canine melanocytic neoplasia. Vet Pathol 43:136–149

    Article  CAS  PubMed  Google Scholar 

  • Sulaimon SS, Kitchell BE, Ehrhart EJ (2002) Immunohistochemical detection of melanoma-specific antigens in spontaneous canine melanoma. J Comp Pathol 127:162–168

    Article  CAS  PubMed  Google Scholar 

  • Tajima S, Ura-Ishiko A, Hayashi A (1996) Melanogenesis, biosynthetic phenotype of fibronectin and collagen, and migrating activity in cloned B16 mouse melanoma cells. J Dermatol Sci 12:24–30

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Grossman HB (2004) Connexin 26 induces growth suppression apoptosis and increased efficacy of doxorubicin in prostate cancer cells. Oncol Rep 11:537–541

    CAS  PubMed  Google Scholar 

  • Torres LN, Matera JM, Vasconcellos CH, Avanzo JL, Hernandez-Blazquez FJ, Dagli MLZ (2005) Expression of connexins 26 and 43 in canine hyperplastic and neoplastic mammary glands. Vet Pathol 42(5):633–641

    Article  CAS  PubMed  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckarkt K, Romualdi A, Guldenagel M, Deutsch U, Sobl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383(5):724–737

    Article  Google Scholar 

  • Withrow SJ, Macewen EG (2001) Small animal oncology. Elsevier, Philadelphia

    Google Scholar 

  • Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Dagli MLZ, Omori Y (1999) Role of connexin (gap junction) genes in cell growth control and carcinogenesis. C R Acad Sci III 322:151–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is part of the PhD thesis of Tarso Felipe Teixeira at the Experimental and Comparative Pathology Program of the School of Veterinary Medicine and Animal Science of the University of São Paulo, Brazil. Tarso Felipe Teixeira was the recipient of a fellowship from Conselho Nacional para o Desenvolvimento Científico e Tecnológico, CNPq. The work received grants from Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP (Proc. No. 2007/56064-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lucia Zaidan Dagli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, T.F., Gentile, L.B., da Silva, T.C. et al. Cell proliferation and expression of connexins differ in melanotic and amelanotic canine oral melanomas. Vet Res Commun 38, 29–38 (2014). https://doi.org/10.1007/s11259-013-9580-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-013-9580-z

Keywords