Veterinary Research Communications

, Volume 37, Issue 3, pp 217–228 | Cite as

Efficacy of anti-staphylococcal protein P128 for the treatment of canine pyoderma: potential applications

  • Raghu Patil Junjappa
  • Srividya Narayanamurthy Desai
  • Panchali Roy
  • Nagalakshmi Narasimhaswamy
  • Juliet Roshini Mohan Raj
  • Murali Durgaiah
  • Aradhana Vipra
  • Udaya Ravi Bhat
  • Smitha Komarla Satyanarayana
  • Nandini Shankara
  • SuneelKumar Muragesh Basingi
  • Jagadeesh Janardhan Bhat
  • Sukumar Hariharan
  • Bharathi Sriram
  • Sriram Padmanabhan
Original Article

Abstract

In this study, we demonstrate the antibacterial activity of P128 on Staphylococcus isolates responsible for canine pyoderma. Eighty seven swabs were collected from dogs suffering from pyoderma and subjected to antibiotic sensitivity test and 46 Staphylococcus strains were isolated and characterized. In-vitro antimicrobial susceptibility testing with P128 was done by Minimum Inhibitory Concentration (MIC) method as per CLSI guidelines. All the Staphylococci isolated from the dogs with pyoderma, although showed resistance to various antibiotics tested, were lysed by P128. Clinical efficacy of P128 was examined in 17 dogs with pyoderma by application of the P128 hydrogel twice daily for 8 days and the results indicated complete healing of all the lesions of all the dogs under treatment. Under the conditions of this study, P128 was found to be a potent convenient proteinaceous drug for the treatment of staphylococcal pyoderma in dogs.

Keywords

Antibiotic resistant Staphylococci Canine pyoderma Coagulase positive staphylococci Coagulase negative staphylococci P128 hydrogel Staphylococcus intermedius Staphylococcus pseudintermedius 

Abbreviations

CFU

Colony forming units

CLSI

Clinical and Laboratory Standards Institute

CoNS

Coagulase negative staphylococci

CoPS

Coagulase positive staphylococci

CPD

Canine pyoderma

GRAS

Generally regarded as safe

LB

Luria Bertani

MIC

Minimum inhibitory concentration

References

  1. Bannoehr J, Ben Zakour NL, Waller AS, Guardabassi L, Thoday KL, van den Broek AH, Fitzgerald JR (2007) Population genetic structure of the Staphylococcus intermedius group: insights into agr diversification and the emergence of methicillin-resistant strains. J Bacteriol 189:8685–8692PubMedCrossRefGoogle Scholar
  2. Bannoehr J, Franco A, Iurescia M, Battisti A, Fitzgerald JR (2009) Molecular diagnostic identification of Staphylococcus pseudintermedius. J Clin Microbiol 47:469–471PubMedCrossRefGoogle Scholar
  3. Barbeyron T, Kean K, Forterre P (1984) DNA adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage. J Bacteriol 160:586–590PubMedGoogle Scholar
  4. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 36:493–496Google Scholar
  5. Bhat UR, Bhagwat VG (2010) Study to assess the beneficial effects of immunol liquid in the management of canine pyoderma. Vet World 3:78–81Google Scholar
  6. Borku MK, Ozkanlar Y, Hanedan B, Duru SY (2007) Efficacy of staphylococcal bacterin for treatment of canine recurrent pyoderma: an open clinical trial. Rev Med Vet-Toulouse 158:234–238Google Scholar
  7. Cefai C, Ashurst S, Owens C (1994) Human carriage of methicillin-resistant Staphylococcus aureus linked with pet dog. Lancet 344:539–540PubMedCrossRefGoogle Scholar
  8. Chuang CY, Yang YL, Hsueh PR, Lee PI (2010) Catheter-related bacteremia caused by Staphylococcus pseudintermedius refractory to antibiotic-lock therapy in a hemophilic child with dog exposure. J Clin Microbiol 48:1497–1498PubMedCrossRefGoogle Scholar
  9. DeLeo FR, Chambers HF (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474PubMedCrossRefGoogle Scholar
  10. Devriese LA, Vancanneyt M, Baele M, Vaneechoutte M, De Graef E, Snauwaert C, Cleenwerck I, Dawyndt P, Swings J, Decostere A, Haesebrouck F (2005) Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. Int J Syst Evol Micr 55:1569–1573CrossRefGoogle Scholar
  11. Devriese LA, Hermans K, Baele M, Haesebrouck F (2008) Staphylococcus pseudintermedius versus Staphylococcus intermedius. Vet Microbiol 133:206–207PubMedCrossRefGoogle Scholar
  12. Devriese LA, Hermans K, Baele M, Haesebrouck F (2009) Staphylococcus pseudintermedius versus Staphylococcus intermedius. Vet Microbiol 133:206–207PubMedCrossRefGoogle Scholar
  13. Frank LA, Kania SA, Hnilica KA, Wilkes RP, Bemis DA (2003) Isolation of Staphylococcus schleiferi from dogs with pyoderma. J Am Vet Med Assoc 222:451–454PubMedCrossRefGoogle Scholar
  14. Ganiere JP, Medaille C, Mangion C (2005) Antimicrobial drug susceptibility of Staphylococcus intermedius clinical isolates from canine pyoderma. J Vet Med B 52:25–31CrossRefGoogle Scholar
  15. George SE, Chikkamadaiah R, Durgaiah M, Joshi AA, Thankappan UP, Madhusudhana SN, Sriram B (2012) Biochemical characterization and evaluation of cytotoxicity of antistaphylococcal chimeric protein P128. BMC Res Notes 5:280PubMedCrossRefGoogle Scholar
  16. Gravitz L (2012) Turning a new phage. Nat Med 18:1318–1320PubMedCrossRefGoogle Scholar
  17. Guardabassi L, Schwarz S, Lloyd DH (2004) Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemoth 54:321–332CrossRefGoogle Scholar
  18. Huerta B, Maldonado A, Ginel PJ, Tarradas C, Gomez-Gascon L, Astorga RJ, Luque I (2011) Risk factors associated with the antimicrobial resistance of staphylococci in canine pyoderma. Vet Microbiol 150:302–308PubMedCrossRefGoogle Scholar
  19. Kelany WM, Galal HM (2011) Diagnosis of recurrent pyoderma in dogs by traditional and molecular based diagnostic assays and its therapeutic approach. J Am Sci 7:120–134Google Scholar
  20. Laarhoven LM, de Heus P, van Luijn J, Duim B, Wagenaar JA, van Duijkeren E (2011) Longitudinal study on methicillin-resistant Staphylococcus pseudintermedius in households. PLoS One 6:e27788PubMedCrossRefGoogle Scholar
  21. Leib ME, Monroe WE (1997) Diseases of the integument. In: Textbook of practical small animal internal medicine. W. B. Saunders Co, Philadelphia, pp 3–116Google Scholar
  22. Lima de Albuquerque LF, Lira AC, Melo Coutinho HD, Júnior de Siqueira JP, Barreto HM (2012) Antimicrobial resistance in staphylococci isolated from canine pyoderma. Com Sci 3:181–185CrossRefGoogle Scholar
  23. Littlewood JD, Lakhani KH, Paterson S, Wood JL, Chanter RN (2009) Clindamycin hydrochloride and clavulanate-amoxycillin in the treatment of canine superficial pyoderma. Vet Res 144:662–665Google Scholar
  24. Loeffler A, Boag AK, Sung J (2005) Prevalence of methicillin-resistant Staphylococcus aureus among staff and pets in a small animal referral hospital in the UK. J Antimicrob Chemoth 56:692–697CrossRefGoogle Scholar
  25. Manian FA (2003) Asymptomatic nasal carriage of mupirocin, methicillin-resistant Staphylococcus aureus (MRSA) in a pet dog associated with MRSA infection in household contacts. Clin Infect Dis 36:26–28CrossRefGoogle Scholar
  26. Morris DO, Boston RC, O’Shea K, Rankin SC (2010) The prevalence of carriage of meticillin-resistant staphylococci by veterinary dermatology practice staff and their respective pets. Vet Dermatol 21:400–407PubMedCrossRefGoogle Scholar
  27. Muller GH, Kirk RW, Scott DW (1989) Bacterial skin diseases. In: Muller GH, Kirk RW, Scott DW (eds) Small animal dermatology. W.B. Saunders Co, Philadelphia, pp 211–246Google Scholar
  28. National Committee for Clinical Laboratory Standards: Methods for determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. 1999, Approved Guideline M26-A. NCCLS, Wayne, PA.Google Scholar
  29. Nienhoff U, Kadlec K, Chaberny IF, Verspohl J, Gerlach GF, Kreienbrock L, Schwarz S, Simon D, Nolte I (2011) Methicillin-resistant Staphylococcus pseudintermedius among dogs admitted to a small animal hospital. Vet Microbiol 150:191–197PubMedCrossRefGoogle Scholar
  30. Paradis M, Abbey L, Baker B, Coyne M, Hannigan M, Joffe D, Pukay B, Trettien A, Waisglass S, Wellington J (2001) Evaluation of the clinical efficacy of marbofloxacin (Zeniquin®) tablets for the treatment of canine pyoderma: an open clinical trial. Vet Dermatol 12:163–169PubMedCrossRefGoogle Scholar
  31. Patel A (2006) Bacterial pyoderma. In: August JR (ed) Consultation in feline internal medicine. Elsevier Saunders, St. Louis, p 251CrossRefGoogle Scholar
  32. Paul VD, Sundarrajan S, Rajagopalan SS, Hariharan S, Kempashanaiah N, Padmanabhan S, Sriram B, Ramachandran J (2011a) Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection. BMC Microbiol 11:195PubMedCrossRefGoogle Scholar
  33. Paul VD, Rajagopalan SS, Sundarrajan S, George SE, Asrani JY, Pillai R, Chikkamadaiah R, Durgaiah M, Sriram B, Padmanabhan S (2011b) A novel bacteriophage tail-associated muralytic enzyme (TAME) from phage K and its development into a potent anti-staphylococcal protein. BMC Microbiol 11:226PubMedCrossRefGoogle Scholar
  34. Penna B, Varges R, Medeiros L, Martins GM, Martins RR, Lilenbaum W (2009) In-vitro antimicrobial sysceptibility of staphylococci isolated from canine pyoderma in rio De Janeiro, Brazil. Braz J Microbiol 40:490–494CrossRefGoogle Scholar
  35. Pottumarthy S, Schapiro JM, Prentice JL, Houze YB, Swanzy SR, Fang FC, Cookson BT (2004) Clinical isolates of Staphylococcus intermedius masquerading as methicillin-resistant Staphylococcus aureus. J Clin Microbiol 42:5881–5884PubMedCrossRefGoogle Scholar
  36. Sasaki A, Shimuzu A, Kawano J, Wakita Y, Hayashi T, Ootsuki S (2005) Characteristics of Staphylococcus intermedius isolates from diseased and healthy dogs. J Vet Med Sci 67:103–106PubMedCrossRefGoogle Scholar
  37. Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K (2007) Reclassification of phenotypically identified Staphylococcus intermedius strains. J Clin Microbiol 45:2770–2778PubMedCrossRefGoogle Scholar
  38. Scott DW, Beningo KE, Miller WH, Rothstein E (1998) Efficacy of clindamycin hydrochloride capsules for the treatment of deep pyoderma due to Staphylococcus intermedius infection in dogs. Can Vet J 39:753–756PubMedGoogle Scholar
  39. Senthil Kumar K, Selvaraj P, Vairamuthu S, Nagarajan B, Nambi AP (2010) Frequency of isolation of Staphylococcus intermedius from canine pyoderma and its antibiogram pattern. Tamilnadu J Vet Animal Sci 6:242–244Google Scholar
  40. Senturk S, Özel E, Sen A (2005) Clinical efficacy of rifampicin for treatment of canine pyoderma. Acta Vet Brno 74:117–122CrossRefGoogle Scholar
  41. Šeol B (2005) Comparative in vitro activities of enrofloxacin, ciprofloxacin and marbofloxacin against Staphylococcus intermedius isolated from dogs. Vet Arhiv 75:189–194Google Scholar
  42. Stegmann R, Burnens A, Maranta CA, Perreten V (2010) Human infection associated with methicillin-resistant Staphylococcus pseudintermedius ST71. J Antimicrob Chemother 65:2047–2048PubMedCrossRefGoogle Scholar
  43. Stepanovic S, Hauschild T, Dakic I, Al-Doori Z, Svabic-Vlahovic M, Ranin L, Morrison D (2006) Evaluation of phenotypic and molecular methods for detection of oxacillin resistance in members of the Staphylococcus sciuri Group. J Clin Microbiol 44:934–937PubMedCrossRefGoogle Scholar
  44. Sturmfels A, Götz F, Peschel A (2001) Secretion of human growth hormone by the food-grade bacterium Staphylococcus carnosus requires a propeptide irrespective of the signal peptide used. Arch Microbiol 175:295–300PubMedCrossRefGoogle Scholar
  45. van Duijkeren E, Wolfhagen MJ, Box AT, Heck ME, Wannet WJ, Fluit AC (2004) Human-to-dog transmission of methicillin-resistant Staphylococcus aureus. Emerg Infect Dis 10:2235–2237PubMedCrossRefGoogle Scholar
  46. van Duijkeren E, Catry B, Greko C, Moreno MA, Pomba MC, Pyörälä S, Ruzauskas M, Sanders P, Threlfall EJ, Torren-Edo J, Törneke K, Scientific Advisory Group on Antimicrobials (SAGAM) (2011) Review on methicillin-resistant Staphylococcus pseudintermedius. J Antimicrob Chemoth 66:2705–2714CrossRefGoogle Scholar
  47. van Loo I, Huijsdens X, Tiemersma E, de Neeling A, van de Sande-Bruinsma N, Beaujean D, Voss A, Kluytmans J (2007) Emergence of methicillin-resistant Staphylococcus aureus of animal origin in humans. Emerg Infect Dis 13:1834–1839PubMedCrossRefGoogle Scholar
  48. Vincze S, Paasch A, Walther B, Ruscher C, Lübke-Becker A, Wieler LH, Barbara K (2010) Multidrug- and methicillin resistant Staphylococcus pseudintermedius as a cause of canine pyoderma: a case report. Berl Munch Tierarztl 123:353–358Google Scholar
  49. Vipra AA, Desai SN, Roy P, Patil R, Raj JM, Narasimhaswamy N, Paul VD, Chikkamadaiah R, Sriram B (2012) Anti-staphylococcal activity of bacteriophage derived chimeric protein P128. BMC Microbiol 12:1CrossRefGoogle Scholar
  50. Wang Y, Yang J, Logue CM, Liu K, Cao X, Zhang W, Shen J, Wu C (2012) Methicillin-resistant Staphylococcus pseudintermedius isolated from canine pyoderma in North China. J Appl Microbiol 112:623–630PubMedCrossRefGoogle Scholar
  51. Wavare SM, Kothadia SN, Ghatole MP (2012) Multidrug resistance and phage pattern of Staphylococcus aureus in pyoderma cases. JKIMSU 1:48–54Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Raghu Patil Junjappa
    • 1
  • Srividya Narayanamurthy Desai
    • 1
  • Panchali Roy
    • 1
  • Nagalakshmi Narasimhaswamy
    • 2
  • Juliet Roshini Mohan Raj
    • 1
  • Murali Durgaiah
    • 1
  • Aradhana Vipra
    • 1
  • Udaya Ravi Bhat
    • 3
  • Smitha Komarla Satyanarayana
    • 1
  • Nandini Shankara
    • 1
  • SuneelKumar Muragesh Basingi
    • 1
  • Jagadeesh Janardhan Bhat
    • 1
  • Sukumar Hariharan
    • 1
  • Bharathi Sriram
    • 1
  • Sriram Padmanabhan
    • 1
  1. 1.Gangagen Biotechnologies Pvt. Ltd.BangaloreIndia
  2. 2.Department of MicrobiologyMelaka Manipal Medical CollegeManipalIndia
  3. 3.Prajna Veterinary ClinicBangaloreIndia

Personalised recommendations