Skip to main content

Advertisement

Log in

Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells–a comparative study

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnhold S, Heiduschka P, Klein H, Absenger Y, Basnaoglu S, Kreppel F, Henke-Fahle S, Kochanek S, Bartz-Schmidt K, Addicks K, Schraermeyer U (2006a) Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats. Invest Ophthalmol Vis Sci 9:4121–4129. doi:10.1167/iovs.04-1501

    Article  Google Scholar 

  • Arnhold S, Klein H, Klinz F, Absenger Y, Schmidt A, Schinköthe T, Brixius K, Kozlowski J, Desai B, Bloch W, Addicks K (2006b) Human bone marrow stroma cells display certain neural characteristics and integrate in the subventricular compartment after injection into the liquor system. Eur J Cell Biol 6:551–565. doi:10.1016/j.ejcb.2006.01.015

    Article  Google Scholar 

  • Arnhold SJ, Goletz I, Klein H, Stumpf G, Beluche LA, Rohde C, Addicks K, Litzke LF (2007) Isolation and characterization of bone marrow-derived equine mesenchymal stem cells. Am J Vet Res 10:1095–1105. doi:10.2460/ajvr.68.10.1095

    Article  Google Scholar 

  • Arthur A, Zannettino A, Gronthos S (2009) The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol 2:237–245. doi:10.1002/jcp.21592

    Article  Google Scholar 

  • Awad HA, Halvorsen YC, Gimble JM, Guilak F (2003) Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng 6:1301–1312. doi:10.1089/10763270360728215

    Article  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 4:568–584. doi:10.1016/j.biocel.2003.11.001

    Article  Google Scholar 

  • Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS (1997) SOX9 directly regulates the type-II collagen gene. Nat Genet 2:174–178. doi:10.1038/ng0697-174

    Article  Google Scholar 

  • Black LL, Gaynor J, Gahring D, Adams C, Aron D, Harman S, Gingerich DA, Harman R (2007) Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther 4:272–284

    Google Scholar 

  • Black LL, Gaynor J, Adams C, Dhupa S, Sams AE, Taylor R, Harman S, Gingerich DA, Harman R (2008) Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther 3:192–200

    Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 5:1076–1084. doi:10.1002/jcb.20886

    Article  Google Scholar 

  • Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 2:798–800

    Article  Google Scholar 

  • Chen FH, Tuan RS (2008) Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther 5:223. doi:10.1186/ar2514

    Article  Google Scholar 

  • Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C, Lazzari G (2009) Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Vet Res Commun 8:811–821. doi:10.1007/s11259-009-9229-0

    Article  Google Scholar 

  • Csaki C, Matis U, Mobasheri A, Ye H, Shakibaei M (2007) Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study. Histochem Cell Biol 6:507–520. doi:10.1007/s00418-007-0337-z

    Article  Google Scholar 

  • Csaki C, Schneider PRA, Shakibaei M (2008) Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 5:395–412. doi:10.1016/j.aanat.2008.07.007

    Article  Google Scholar 

  • Csaki C, Matis U, Mobasheri A, Shakibaei M (2009) Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochem Cell Biol 2:251–266. doi:10.1007/s00418-008-0524-6

    Article  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 4:315–317. doi:10.1080/14653240600855905

    Article  Google Scholar 

  • Estes BT, Wu AW, Guilak F (2006) Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum 4:1222–1232. doi:10.1002/art.21779

    Article  Google Scholar 

  • Frisbie DD, Smith RKW (2010) Clinical update on the use of mesenchymal stem cells in equine orthopaedics. Equine Vet J 1:86–89. doi:10.2746/042516409X477263

    Google Scholar 

  • Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW (2009) Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res 12:1675–1680. doi:10.1002/jor.20933

    Article  Google Scholar 

  • Godwin EE, Young NJ, Dudhia J, Beamish IC, Smith RKW (2011) Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J 1:25–32. doi:10.1111/j.2042-3306.2011.00363.x

    Google Scholar 

  • Hennig T, Lorenz H, Thiel A, Goetzke K, Dickhut A, Geiger F, Richter W (2007) Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. J Cell Physiol 3:682–691. doi:10.1002/jcp.20977

    Article  Google Scholar 

  • Huang JI, Kazmi N, Durbhakula MM, Hering TM, Yoo JU, Johnstone B (2005) Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res 6:1383–1389. doi:10.1016/j.orthres.2005.03.008.1100230621

    Google Scholar 

  • Im G, Shin Y, Lee K (2005) Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr Cartil 10:845–853. doi:10.1016/j.joca.2005.05.005

    Article  Google Scholar 

  • Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 5:1285–1297. doi:10.1002/jcb.20904

    Article  Google Scholar 

  • Jung M, Kaszap B, Redöhl A, Steck E, Breusch S, Richter W, Gotterbarm T (2009) Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant 8:923–932. doi:10.3727/096368909X471297

    Article  Google Scholar 

  • Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 2:125–134

    Article  Google Scholar 

  • Kamishina H, Deng J, Oji T, Cheeseman JA, Clemmons RM (2006) Expression of neural markers on bone marrow-derived canine mesenchymal stem cells. Am J Vet Res 11:1921–1928. doi:10.2460/ajvr.67.11.1921

    Article  Google Scholar 

  • Kang JW, Kang K, Koo HC, Park JR, Choi EW, Park YH (2008) Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells. Stem Cell Dev 4:681–693. doi:10.1089/scd.2007.0153

    Article  Google Scholar 

  • Koch TG, Berg LC, Betts DH (2009) Current and future regenerative medicine–principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Can Vet J 2:155–165

    Google Scholar 

  • Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr Cartil 2:226–231. doi:10.1016/j.joca.2006.08.008

    Article  Google Scholar 

  • Le Blanc K, Ringdén O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 5:509–525. doi:10.1111/j.1365-2796.2007.01844.x

    Article  Google Scholar 

  • Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, Bae YC, Jung JS (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 4–6:311–324. doi:10.1159/000080341

    Article  Google Scholar 

  • Lee KBL, Hui JHP, Im Song C, Ardany L, Lee EH (2007) Injectable mesenchymal stem cell therapy for large cartilage defects—a porcine model. Stem Cell 11:2964–2971. doi:10.1634/stemcells.2006-0311

    Article  Google Scholar 

  • Lee RH, Oh JY, Choi H, Bazhanov N (2011) Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. J Cell Biochem 11:3073–3078. doi:10.1002/jcb.23250

    Article  Google Scholar 

  • Lefebvre V, de Crombrugghe B (1998) Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol 9:529–540

    Article  Google Scholar 

  • Liang C, Park AY, Guan J (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333. doi:10.1038/nprot.2007.30

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Luo E, Chen X, Liu L, Qiao J, Yan Z, Li Z, Tang W, Zheng X, Tian W (2005) Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med 4:929–939

    Article  Google Scholar 

  • Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B (2007) Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cell 3:750–760. doi:10.1634/stemcells.2006-0394

    Google Scholar 

  • Marie PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 2:98–105. doi:10.1016/j.abb.2008.02.030

    Article  Google Scholar 

  • Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 12:3464–3474. doi:10.1002/art.11365

    Article  Google Scholar 

  • Neupane M, Chang C, Kiupel M, Yuzbasiyan-Gurkan V (2008) Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A 6:1007–1015

    Article  Google Scholar 

  • Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL (2008) Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 7:928–937. doi:10.2460/ajvr.69.7.928

    Article  Google Scholar 

  • Nöth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nature clinical practice. Rheumatology 7:371–380. doi:10.1038/ncprheum0816

    Google Scholar 

  • Pan GJ, Chang ZY, Schöler HR, Pei D (2002) Stem cell pluripotency and transcription factor Oct4. Cell Res 5–6:321–329. doi:10.1038/sj.cr.7290134

    Article  Google Scholar 

  • Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 3:424–436

    Article  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 5411:143–147

    Article  Google Scholar 

  • Raabe O, Reich C, Wenisch S, Hild A, Burg-Roderfeld M, Siebert H, Arnhold S (2010) Hydrolyzed fish collagen induced chondrogenic differentiation of equine adipose tissue-derived stromal cells. Histochem Cell Biol 6:545–554. doi:10.1007/s00418-010-0760-4

    Article  Google Scholar 

  • Raabe O, Shell K, Würtz A, Reich CM, Wenisch S, Arnhold S (2011) Further insights into the characterization of equine adipose tissue-derived mesenchymal stem cells. Vet Res Commun 6:355–365. doi:10.1007/s11259-011-9480-z

    Article  Google Scholar 

  • Sanderson RO, Beata C, Flipo R, Genevois J, Macias C, Tacke S, Vezzoni A, Innes JF (2009) Systematic review of the management of canine osteoarthritis. Vet Rec 14:418–424

    Article  Google Scholar 

  • Sekiya I, Koopman P, Tsuji K, Mertin S, Harley V, Yamada Y, Shinomiya K, Nifuji A, Noda M (2001) Dexamethasone enhances SOX9 expression in chondrocytes. J Endocrinol 3:573–579

    Article  Google Scholar 

  • Smith RKW (2008) Mesenchymal stem cell therapy for equine tendinopathy. Disabil Rehabil 20–22:1752–1758. doi:10.1080/09638280701788241

    Article  Google Scholar 

  • Tondreau T, Lagneaux L, Dejeneffe M, Massy M, Mortier C, Delforge A, Bron D (2004) Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 7:319–326. doi:10.1111/j.1432-0436.2004.07207003.x

    Article  Google Scholar 

  • Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 7:613–622. doi:10.1111/j.1532-950X.2007.00313.x

    Article  Google Scholar 

  • Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM (2008) Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg 8:713–724. doi:10.1111/j.1532-950X.2008.00462.x

    Article  Google Scholar 

  • Vieira NM, Brandalise V, Zucconi E, Secco M, Strauss BE, Zatz M (2010) Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant 3:279–289. doi:10.3727/096368909X481764

    Article  Google Scholar 

  • Weiss C, Rosenberg L, Helfet AJ (1968) An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg 4:663–674

    Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, de Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 12:4279–4295. doi:10.1091/mbc.E02-02-0105

    Article  Google Scholar 

Download references

Conflict of interest

None of the authors of this paper has a financial or personal relationship with other people or organisations that could inappropriately influence or bias the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Reich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, C.M., Raabe, O., Wenisch, S. et al. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells–a comparative study. Vet Res Commun 36, 139–148 (2012). https://doi.org/10.1007/s11259-012-9523-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-012-9523-0

Keywords

Navigation