Skip to main content
Log in

Macro-microscopic study on the toepad of ostrich (Struthio camelus)

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

The ostrich foot has four toepads, two on the 3rd digit, one on the 4th digit and one at metatarso-phalangeal joint. Previous studies have not detailed the histo-morphological structure of these toepads. In this study, we have described the macroscopic and microscopic structures of the toepad of ostrich (Struthio camelus). Numerous papillae with different direction, length and thickness have been observed grossly on the ventral surface of each toepad. Histological examinations have revealed that the epidermis of the ostrich toepad, similar to other digitigrades, consists of an outer stratum corneum and an inner stratum germinativum (which is subdivided into basal, intermediate and transitional layers). The stratum corneum has several layers of flattened horny cells. The nuclei of basal cells have several mitotic figures. The cytoplasm of the stratum germinativum cells has multiple lipid droplets and multigranular bodies (in transitional cells only). Scanning electron microscopic examination revealed presence of collagen fibers in mid and deep dermis of each toepad. These fibers run parallel and connect to each other by very thin fibrils which are branched, crossed with each other in an oblique direction. Such arrangement of these collagen fibers, thin fibrils and presence of digital cushion are likely to be responsible for the protection of the underlying soft tissues and absorption of concussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Alexander RMcN, Maloiy GMO, Njau R, Jayes AS (1979) Mechanics of running in the ostrich (Struthio camelus). J Zool Lond 187:169–178

    Article  Google Scholar 

  • Bennett C (1997) Foot pad health and small laying hen flocks livestock knowledge. Winnipeg, Manaitoba. http:www.Gov.mbCo. agriculture

  • Cooper R, Mahrose M, Elshafei M, Mara I (2008) Ostrich farming. J Trop Anim Health Prod 40(5):349–355

    Article  CAS  Google Scholar 

  • Deeming DC (1999) The ostrich biology. Production and Health

  • Egerbacher M, Helmreich M, Probst A, König H, Böck P (2005) Digital cushions in horses comprise coarse C.T. myxoid tissue and cartilage but only little unilocular fat. Anat Histol Embryol 34:112–116

    Article  PubMed  CAS  Google Scholar 

  • Korner-Nievergelt F (2004) 13 Correlation of foot sole morphology with locomotion behaviour and substrate use in four passerine genera. In: Elewa AMT (ed) Morphometrics applications in biology and paleontology, pp 175–196

  • Gibson T, Kendi RM, Craik E (1965) The mobile architecture of dermal collagen. Br J Surg 52:764–770

    Article  PubMed  CAS  Google Scholar 

  • Hallam MG (1992) The Topaz introduction to practical ostrich farming. Harare, Zimbabwe

  • Harris HF (1900) The haematoxylins: In: Bancroft JD, Stevens A (eds) Theory and practice of histological techniques, 2nd Edn. Colchester and London.

  • Hayat M (1986) Basic techniques for transmission Electron Microscope, 2nd edn. Academic, Baltimore

    Google Scholar 

  • Keast A (1996) Wing shape in insectivorous passerines inhabiting New Guinea and Australian rain forests and eucalyptic forest/eucalyptic woodlands. Auk 113:94-

    Google Scholar 

  • König HE, Macher R, Polsterer-Heindl E, Sora C-M, Ch. Hinterhofer M Helmreich, P. Bo¨ ck (2003) Sto Bbrechende enrichtugen am zehenendorgan des pferdes. Wien Tierarzll Mschr 90:267–273

  • Landmann L (1980) Lamellar granules in mammalian, avian and reptilian epidermis. J Ultrastruct Res 72:245–263

    Article  PubMed  CAS  Google Scholar 

  • Lennerstedt I (1975) A functional study of papillae and pads in the foot of passerines, parrots, and owls. Zoolog Scripta 4:111–123

    Article  Google Scholar 

  • Lilly White HB (2006) Water relations of tetrapod integument. J Exp Biol 209:202–226

    Article  Google Scholar 

  • Manlius N (2002) The ostrich in Egypt past and present. J Biogeogr 28:945–953

    Article  Google Scholar 

  • Masson P (1929) Some histological methods trichrome staining and their preliminary technique. Bull Intern Assoc 12:7–10

    Google Scholar 

  • McDowell A, Trump F (1976) Histologic fixatives suitable for diagnostic light and electron microscopy. Arch Pathol Lab Med 100:405–415

    PubMed  CAS  Google Scholar 

  • Menon GK, Brown B, Elias P (1986) Avian epidermal differentiation role of lipids in permeability barrier formation. Tissue Cell 18(1):71–82

    Article  PubMed  CAS  Google Scholar 

  • Menon GK, SY E Hou, Elias PM (1991) Avian permeability barriers function reflects mode of sequestration and organization of stratum corneum lipid: revaluation utilizing Ruthenium tetroxide staining and lipase cytochemistry. Tiss Cell 445–456

  • Menon GK, Maderson PF, Drewes RC, Baptista LF, Price LF, Elias PM (1996) Ultrastructure organization of avian stratum corneum lipids as the basis for facultative cutaneous wateroofing. J Morphol 227:1–13

    Article  PubMed  CAS  Google Scholar 

  • Menon GK, Menon J (2000) Avian epidermal lipid: functional considerations and relationship to feathering. Am Zool 40:540–552

    Article  CAS  Google Scholar 

  • Meyer W, Neurand K, Radke B (1981) Elastic fiber arrangement in the skin of the pig. Arch Dermatol Res 270:391–401

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Cloete P, Brown R, Schalklugk J (2002) Declawing ostrich “struthio camelus domesticus” chicks to minimize skin damage during rearing. S Afr J Anim Sci 32:3

    Google Scholar 

  • Milản J (2006) Variations in the morphology of emu (Dromaius Novahollandiae) tracks reflecting differences in walking pattern and substrate consistency: ichnotaxonomic implication. Palaeontology 49(2):405–420

    Article  Google Scholar 

  • Odland GF, Montagna W, Lobitz W (1964) (Eds) The epidermis. Academic press, New York, pp 237–249

  • Ridge M, Wright V (1966) The directional effects of the skin. J Invest Dermatol 46:341–346

    PubMed  CAS  Google Scholar 

  • Raikow RJ (1985) Locomotor systems. In: King AS, McLelland J (eds) Form and function in birds. Academic, London, pp 57–147

    Google Scholar 

  • Shanawany M, Dingle J (1999) Ostrich production system food and Agriculture org.

  • Shtekher S (1966) The rate of physiological regeneration of avian epidermis. Translated from Biulleten' eksperimental'noĭ biologii i meditsiny, 61(3):323–315

    Google Scholar 

  • Spearman R (1971) The integument, a text book of skin biology, vol. (3). Cambridge University Press

  • Speer B (2003) Ratite neuromuscular disease. WW.netpets,org/birds/healthspa/Vet/ratite.html

  • Stettenheim P (2000) The integumentary morphology of modern birds an over view. Integr Comp Biol 40(4):461–477

    Article  Google Scholar 

  • Szirmai J (1968) The organization of the dermis. In: Montagna W, Bentely JP, Dobson Rl (eds) Advances in biology of skin_ dermis, vol x. Appleton-Century-Croft, pp 1–17

  • Wertz PW (2000) Lipids and barrier function of the skin. Acta Derm Venersel, supp. 208, pp 7–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. A. El-Gendy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Gendy, S.A.A., Derbalah, A. & El-Magd, M.E.R.A. Macro-microscopic study on the toepad of ostrich (Struthio camelus). Vet Res Commun 36, 129–138 (2012). https://doi.org/10.1007/s11259-012-9522-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-012-9522-1

Keywords

Navigation