Macro-microscopic study on the toepad of ostrich (Struthio camelus)

Abstract

The ostrich foot has four toepads, two on the 3rd digit, one on the 4th digit and one at metatarso-phalangeal joint. Previous studies have not detailed the histo-morphological structure of these toepads. In this study, we have described the macroscopic and microscopic structures of the toepad of ostrich (Struthio camelus). Numerous papillae with different direction, length and thickness have been observed grossly on the ventral surface of each toepad. Histological examinations have revealed that the epidermis of the ostrich toepad, similar to other digitigrades, consists of an outer stratum corneum and an inner stratum germinativum (which is subdivided into basal, intermediate and transitional layers). The stratum corneum has several layers of flattened horny cells. The nuclei of basal cells have several mitotic figures. The cytoplasm of the stratum germinativum cells has multiple lipid droplets and multigranular bodies (in transitional cells only). Scanning electron microscopic examination revealed presence of collagen fibers in mid and deep dermis of each toepad. These fibers run parallel and connect to each other by very thin fibrils which are branched, crossed with each other in an oblique direction. Such arrangement of these collagen fibers, thin fibrils and presence of digital cushion are likely to be responsible for the protection of the underlying soft tissues and absorption of concussion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

References

  1. Alexander RMcN, Maloiy GMO, Njau R, Jayes AS (1979) Mechanics of running in the ostrich (Struthio camelus). J Zool Lond 187:169–178

    Article  Google Scholar 

  2. Bennett C (1997) Foot pad health and small laying hen flocks livestock knowledge. Winnipeg, Manaitoba. http:www.Gov.mbCo. agriculture

  3. Cooper R, Mahrose M, Elshafei M, Mara I (2008) Ostrich farming. J Trop Anim Health Prod 40(5):349–355

    Article  CAS  Google Scholar 

  4. Deeming DC (1999) The ostrich biology. Production and Health

  5. Egerbacher M, Helmreich M, Probst A, König H, Böck P (2005) Digital cushions in horses comprise coarse C.T. myxoid tissue and cartilage but only little unilocular fat. Anat Histol Embryol 34:112–116

    PubMed  Article  CAS  Google Scholar 

  6. Korner-Nievergelt F (2004) 13 Correlation of foot sole morphology with locomotion behaviour and substrate use in four passerine genera. In: Elewa AMT (ed) Morphometrics applications in biology and paleontology, pp 175–196

  7. Gibson T, Kendi RM, Craik E (1965) The mobile architecture of dermal collagen. Br J Surg 52:764–770

    PubMed  Article  CAS  Google Scholar 

  8. Hallam MG (1992) The Topaz introduction to practical ostrich farming. Harare, Zimbabwe

  9. Harris HF (1900) The haematoxylins: In: Bancroft JD, Stevens A (eds) Theory and practice of histological techniques, 2nd Edn. Colchester and London.

  10. Hayat M (1986) Basic techniques for transmission Electron Microscope, 2nd edn. Academic, Baltimore

    Google Scholar 

  11. Keast A (1996) Wing shape in insectivorous passerines inhabiting New Guinea and Australian rain forests and eucalyptic forest/eucalyptic woodlands. Auk 113:94-

    Google Scholar 

  12. König HE, Macher R, Polsterer-Heindl E, Sora C-M, Ch. Hinterhofer M Helmreich, P. Bo¨ ck (2003) Sto Bbrechende enrichtugen am zehenendorgan des pferdes. Wien Tierarzll Mschr 90:267–273

  13. Landmann L (1980) Lamellar granules in mammalian, avian and reptilian epidermis. J Ultrastruct Res 72:245–263

    PubMed  Article  CAS  Google Scholar 

  14. Lennerstedt I (1975) A functional study of papillae and pads in the foot of passerines, parrots, and owls. Zoolog Scripta 4:111–123

    Article  Google Scholar 

  15. Lilly White HB (2006) Water relations of tetrapod integument. J Exp Biol 209:202–226

    Article  Google Scholar 

  16. Manlius N (2002) The ostrich in Egypt past and present. J Biogeogr 28:945–953

    Article  Google Scholar 

  17. Masson P (1929) Some histological methods trichrome staining and their preliminary technique. Bull Intern Assoc 12:7–10

    Google Scholar 

  18. McDowell A, Trump F (1976) Histologic fixatives suitable for diagnostic light and electron microscopy. Arch Pathol Lab Med 100:405–415

    PubMed  CAS  Google Scholar 

  19. Menon GK, Brown B, Elias P (1986) Avian epidermal differentiation role of lipids in permeability barrier formation. Tissue Cell 18(1):71–82

    PubMed  Article  CAS  Google Scholar 

  20. Menon GK, SY E Hou, Elias PM (1991) Avian permeability barriers function reflects mode of sequestration and organization of stratum corneum lipid: revaluation utilizing Ruthenium tetroxide staining and lipase cytochemistry. Tiss Cell 445–456

  21. Menon GK, Maderson PF, Drewes RC, Baptista LF, Price LF, Elias PM (1996) Ultrastructure organization of avian stratum corneum lipids as the basis for facultative cutaneous wateroofing. J Morphol 227:1–13

    PubMed  Article  CAS  Google Scholar 

  22. Menon GK, Menon J (2000) Avian epidermal lipid: functional considerations and relationship to feathering. Am Zool 40:540–552

    Article  CAS  Google Scholar 

  23. Meyer W, Neurand K, Radke B (1981) Elastic fiber arrangement in the skin of the pig. Arch Dermatol Res 270:391–401

    PubMed  Article  CAS  Google Scholar 

  24. Meyer A, Cloete P, Brown R, Schalklugk J (2002) Declawing ostrich “struthio camelus domesticus” chicks to minimize skin damage during rearing. S Afr J Anim Sci 32:3

    Google Scholar 

  25. Milản J (2006) Variations in the morphology of emu (Dromaius Novahollandiae) tracks reflecting differences in walking pattern and substrate consistency: ichnotaxonomic implication. Palaeontology 49(2):405–420

    Article  Google Scholar 

  26. Odland GF, Montagna W, Lobitz W (1964) (Eds) The epidermis. Academic press, New York, pp 237–249

  27. Ridge M, Wright V (1966) The directional effects of the skin. J Invest Dermatol 46:341–346

    PubMed  CAS  Google Scholar 

  28. Raikow RJ (1985) Locomotor systems. In: King AS, McLelland J (eds) Form and function in birds. Academic, London, pp 57–147

    Google Scholar 

  29. Shanawany M, Dingle J (1999) Ostrich production system food and Agriculture org.

  30. Shtekher S (1966) The rate of physiological regeneration of avian epidermis. Translated from Biulleten' eksperimental'noĭ biologii i meditsiny, 61(3):323–315

    Google Scholar 

  31. Spearman R (1971) The integument, a text book of skin biology, vol. (3). Cambridge University Press

  32. Speer B (2003) Ratite neuromuscular disease. WW.netpets,org/birds/healthspa/Vet/ratite.html

  33. Stettenheim P (2000) The integumentary morphology of modern birds an over view. Integr Comp Biol 40(4):461–477

    Article  Google Scholar 

  34. Szirmai J (1968) The organization of the dermis. In: Montagna W, Bentely JP, Dobson Rl (eds) Advances in biology of skin_ dermis, vol x. Appleton-Century-Croft, pp 1–17

  35. Wertz PW (2000) Lipids and barrier function of the skin. Acta Derm Venersel, supp. 208, pp 7–11

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. A. El-Gendy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El-Gendy, S.A.A., Derbalah, A. & El-Magd, M.E.R.A. Macro-microscopic study on the toepad of ostrich (Struthio camelus). Vet Res Commun 36, 129–138 (2012). https://doi.org/10.1007/s11259-012-9522-1

Download citation

Keywords

  • Toepads
  • Digital cushion
  • Morphology
  • Electron microscopy
  • Ostrich